
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

Using a Distributed Object-Oriented Database Management Using a Distributed Object-Oriented Database Management

System in Support of a High-Speed Network Intrusion Detection System in Support of a High-Speed Network Intrusion Detection

System Data Repository System Data Repository

Phillip W. Polk

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Polk, Phillip W., "Using a Distributed Object-Oriented Database Management System in Support of a High-
Speed Network Intrusion Detection System Data Repository" (2001). Theses and Dissertations. 4676.
https://scholar.afit.edu/etd/4676

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholar.afit.edu%2Fetd%2F4676&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4676?utm_source=scholar.afit.edu%2Fetd%2F4676&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

USING A DISTRIBUTED OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEM IN SUPPORT

OF A HIGH-SPEED NETWORK INTRUSION
DETECTION SYSTEM DATA REPOSITORY

THESIS

Phfflip W. Polk
2Lt, USAF

AFIT/GCS/ENG/01M-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

20010706 156

www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the United States Air Force, Department of Defense, or the U. S. Government.

www.manaraa.com

AFIT/GCS/ENG/01M-09

USING A DISTRIBUTED OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEM IN SUPPORT OF A HIGH-SPEED

NETWORK INTRUSION DETECTION SYSTEM DATA REPOSITORY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Phillip W. Polk, B.S.

2Lt, USAF

March 2001

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT/GCS/ENG/01M-09

USING A DISTRIBUTED OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEM IN SUPPORT OF A HIGH-SPEED

NETWORK INTRUSION DETECTION SYSTEM DATA REPOSITORY

Phillip W. Polk, B.S.
2Lt, USAF

Approved:

jfeggETGunsch (Chairman) date

Karl S. Mathias, Maj, USAF (Member) date

\l/^J i^Iß^J ZL f^y 07
Michael L. Talbert, Maj, USAF (Member) date

www.manaraa.com

Acknowledgements

I would first like to thank my advisor, Dr. Gregg Gunsch, for his dedication and guidance

throughout the lifecycle of this thesis. His time and effort were invaluable to the success of this

research and my growth both as a student and as a junior Air Force officer. I would also like to

thank my committee members, Major Michael Talbert and Major Karl Mathias for their database

expertise and knowledge. Their lectures and advice led to a great understanding into the areas in

which I probed.

I also would like to thank those at AFRL who allowed us to use their system as a model for

the design portion of this thesis. Without Vinnie Salerno, the AIDE database and its functionality

would have never been fully understood. Chet Maciag, Julia Pilny, Phil Zoleski, Greg Drew, Tom

Daley, and Brian Spink also provided much needed information and support for this thesis. My

thanks also to Dawn Vu from AFIWC/CMET. I hope that AFIT students can continue to work

with individuals such as these.

My thanks goes out to Abraham Glazer, Jack Murray and Robert Cheong from Objectivity,

Inc. for providing the resources necessary to deploy their database products and keep them running.

And to my wife and children, who have endured the long nights of study and research, I

dedicate this thesis. Without their patience and understanding, none of this would have been pos-

sible.

www.manaraa.com

Table of Contents

Page

Acknowledgements iv

List of Figures viii

List of Tables x

List of Abbreviations and Symbols xi

Abstract xiii

CHAPTER I. Introduction 1

1.1 Background 1

1.1.1. ASIM/CIDDS 2

1.1.2. AIDE 2

1.2 Problem Statement '.. 3

1.3 Research Hypothesis 6

1.4 Scope 9

1.5 Assumptions 10

1.6 Thesis Organization 10

CHAPTER H. Literature Review 12

2.1 Current USAF Supported IDS Data Repository Initiatives: ASIM/CIDDS & AIDE 12

2.1.1. ASIM 13

2.1.2. CIDDS 15

2.1.3. AIDE 16

2.1.4. System Comparison 22

2.2 Object Persistence 23

2.2.1. What is an object? 24

2.2.2. Relational vs. Object-Oriented Implementations 29

2.3 RDBMS to OODBMS Schema Transformation 38

2.4 Federated OODBMS 39

2.4.1. Distributed DBMS (DDBMS) 40

2.4.2. Distributed Object-Oriented DBMS (DOODBMS) Design 43

2.4.3. Tightly-coupled vs Loosely-coupled DDBMS 44

2.4.4. Federated DBMS 45

2.4.5. DOODBMS Design 45

2.5 Objectivity/DB Overview 50

2.5.1. Architecture 50

2.5.2. Development 52

2.5.3. Transactions 55

www.manaraa.com

2.5.4. Security 56

2.5.5. Distribution 56

2.5.6. Schema Evolution 57

CHAPTER HI. Methodology 58

3.1 Introduction 58

3.2 DOODBMS Design 58

3.3 Database Integration into IDS Application 64

3.3.1. Components 65

3.4 Summary 67

CHAPTER IV. Database/System Implementation 68

4.1 Introduction 68

4.2 Analyze IDS Structure 68

4.3 Re-engineering the RDBMS Schema to a DOODBMS Schema 70

4.3.1. ER Model of AIDE 71

4.3.2. AIDE Initial Object Model 71

4.3.3. Refine Classes 71

4.3.4. Prepare a Functional Model 74

4.4 High-Level Design 75

4.4.1. System Design Trade-offs 76

4.4.2. Resolve to-Many Relationships with Respect to Database Representation 76

4.4.3. Refine Classes and Associations to Better Model Data 77

4.4.4. Design Global Conceptual Schema 78

4.4.5. Distribution Design and Local Schema Design 79

4.4.6. Implementing Using Objectivity/DB 82

4.5 Low-Level Design 89

4.6 Tap Application Development 91

4.6.1. Conceptualization 91

4.6.2. Analysis 91

4.6.3. System Design with OODBMS and Detailed Design 95

4.7 Summary 96

CHAPTER V. Testing and Evaluation 97

5.1 Performance Benchmark 97

5.1.1. Testing Steps and Architectures 98

5.1.2. OOAIDE Real Secure Test Results 103

5.2 Database Distribution 110

5.3 Demonstrate Taps Utilizing Common OOP Design Ill

5.4 Summary 112

CHAPTER VI. Conclusions 113

6.1 Implementation Critique 113

6.1.1. AIDE to OOAIDE Translation Limitations 113

6.1.2. Accomplishments 114

vi

www.manaraa.com

6.1.3. Disadvantages 115
6.2 Future Research 116
6.3 Conclusion 118

Appendix A. AIDE Data Dictionary 119

Appendix B. OOAIDE Data Dictionary 125

Appendix C. Real Secure Tap/Trigger Code 129

C.l Perl/Oracle AIDE Real Secure Tap Code 129
C.2 Java OOAIDE Real Secure Tap Code 130

Appendix D. Query Test Code 133

D.l All Events 133
D.l.l AIDE 133
D.1.2 OOAIDE 134

D.2 All Events with AIDE Signature 135
D.2.1 AIDE 135
D.2.2 OOAIDE 137

D.3 Events of Single IP 138
D.3.1 AIDE 138
D.3.2 OOAIDE 139

D.4 Events of Single IP with Sensor 140
D.4.1 AIDE 140
D.4.2 OOAIDE 142

Bibliography 143

Vita 146

Vll

www.manaraa.com

List of Figures

Figure Pa§e

2-1. ASIM/CIDDS High-Level Architecture 13

2-2. AIDE Tap/Bridge Architecture Diagram 19

2-3. Layout of Sites and Hosts 20

2-4. AIDE ER Diagram 21

2-5. Generalization Example 28

2-6. Object to Relational Mapping Using OID 30

2-7. Memory Hierarchy usingOODBMS 34

2-8. Objectivity/DB OID Composition 51

4-1. OO-AIDE Process Diagram 69

4-2. AIDE ER Diagram 70

4-3. AIDE Entity-to-Class Translation 72

4-4. Refined Class Diagram 73

4-5. Final Class Diagram 75

4-6. Global Schema 78

4-7. Quorum and Non-Quorum with Unevenly Distributed Weights 83

4-8. OOAIDE Databases and Partitions 85

4-9. OOAIDE Database Containers 87

4-10. OOAIDE Class Diagram 95

5-1. Real Secure Tap Architecture 98

5-2. Object Instantiation and Record Insertions for AIDE and OOAIDE Tap 104

VUl

www.manaraa.com

Figure Page

5-3. Queries on AIDE and OOAIDE via Java 105

IX

www.manaraa.com

List of Tables

Table Page

2-1. Graphical Representation of Class Using UML 26

2-2. RDBMS vs. OODBMS Comparison 29

2-3. Extensions Needed When Utilizing an RDBMS 32

2-4. ACID 42

5-1. Real Secure Database Fields 103

5-2. Hardware/Software Test Configuration 104

6-1. Perl Specifications for Real Secure Tap 129

www.manaraa.com

List of Abbreviations and Symbols

AFED Air Force Enterprise Defense

AFIWC Air Force Information Warfare Center

AIDE Automated Intrusion Detection Environment

AMS Advanced Multi-threaded Server (Objectivity/DB)

ASIM Automated Security Incident Measurement

CIDDS Common Intrusion Detection Director System

CMET Countermeasure Engineering Team

DDBMS Distributed Database Management System

DDL Data Definition Language

DOODBMS Distributed Object-Oriented Database Management System

DRO Data Replication Option (Objectivity/DB)

EPIC Extensible Prototype for Intrusion Control

ER Entity-Relationship

FDBMS Federated Database Management System

FTO Fault Tolerance Option (Objectivity/DB)

GUI Graphical User Interface

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IDT Intrusion Detection Tool

IP Internet Protocol

www.manaraa.com

JDBC Java Database Connectivity

LS Lock Server (Objectivity/DB)

MROW Multiple Readers, One Writer

NFS Network File System

NIDS Network Intrusion Detection System

ODBC Open Database Connectivity

ODMG Object Database Management Group

OID Object Identifier

OMT Object Modeling Technique

00 Object-Oriented

OOA Object-Oriented Analysis

OOAIDE Object-Oriented Automated Intrusion Detection Environment

OOD Object-Oriented Design

OODBMS Object-Oriented Database Management System

OOP Object-Oriented Programming

RDBMS Relational Database Management System

SLAC Stanford Linear Accelerator Center

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

VPN Virtual Private Network

XML extensible Markup Language

Xll

www.manaraa.com

AFIT/GCS/ENG/01M-09

Abstract

The Air Force has multiple initiatives to develop data repositories for high-speed network

intrusion detection systems (IDS). All of the developed systems utilize a relational database man-

agement system (RDBMS) as the primary data storage mechanism. The purpose of this thesis is to

replace the RDBMS in one such system developed by AFRL, the Automated Intrusion Detection

Environment (AIDE), with a distributed object-oriented database management system (DOO-

DBMS) and observe a number of areas: its performance against the RDBMS in terms of IDS event

insertion and retrieval, the distributed aspects of the new system, and the resulting object-oriented

architecture.

The resulting system, the Object-Oriented Automated Intrusion Detection Environment

(OOAIDE), is designed, built, and tested using the DOODBMS Objectivity/DB. Initial tests indi-

cate that the new system is remarkably faster than the original system in terms of event insertion.

Object retrievals are also faster when more than one association is used in the query. The database

is then replicated and distributed across a simple heterogeneous network with preliminary tests

indicating no loss of performance. A standardized object model is also presented that can accom-

modate any IDS data repository built around a DOODBMS architecture.

XUl

www.manaraa.com

USING A DISTRIBUTED OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEM IN SUPPORT OF A HIGH-SPEED

NETWORK INTRUSION DETECTION SYSTEM

DATA REPOSITORY

/. Introduction

Network Intrusion Detection Systems (NIDS) are tools used to monitor traffic to

and from a network in order to provide information on any attempts by intruders to gain

access to a network system. Currently, there are two major NIDS initiatives within the

United States Air Force (USAF). One is the Automated Security Incident Measurement

(ASIM) and Common Intrusion Detection Director System (CIDDS) developed by the

Countermeasure Engineering Team (CMET) under the Air Force Information Warfare

Center (AFIWC). Both ASIM and CIDDS are deployed in support of the AFIWC to pro-

vide network intrusion reporting and advanced analysis of collected network data from

across the Air Force. The second initiative is the Automated Intrusion Detection Environ-

ment (AIDE) developed by the Air Force Research Laboratory (AFRL) in support of the

DoD.

1.1 Background

Both ASIM/CIDDS and AIDE are similar in the way they process data. Packets are

retrieved from the physical network through either a proprietary network sniffing method,

which is the case with ASIM, or commercial IDSs and packet sniffers, as with AIDE.

www.manaraa.com

The data is then converted into some usable form for the system so near-real-time

alerts may be generated on known attempt signatures. ASIM produces C++ and Java

objects, and AIDE feeds the IDS data into scripts or C programs before sending it to the

database. The ASIM objects, and resulting AIDE data, are then inserted into their respec-

tive databases.

Analysis and reporting tools are used to dissect the data in the databases and form

an overall picture of current network status. Both systems utilize Java interfaces as a means

to display information from the database to the analyst. Using tables and in AIDE'S case,

maps and bar charts, the Java front-end also allows the analyst to manipulate and insert cer-

tain pieces of information.

1.1.1. ASIM/CIDDS.

ASIM/CIDDS went into development in 1993 as a beta project funded by the USAF

to test the plausibility of deploying such a system on its networks. Since then it has become

a full-featured NIDS and functions in a production environment.

Using a "black-box" approach, a stand-alone sensor unit is deployed to a remote site

and connected to the network between the Internet and the USAF base's network where it

passively sniffs packets as they transition from the public to private network. Data is then

sent from the sensor to a director under which it is assigned. Once at the director level, the

data is converted and inserted into CIDDS, the database that serves as the analysis and

reporting component of the current USAF IDS and which continues to revolve around the

Oracle Database Management System (DBMS). A Java console is used to extract and

manipulate information reported to an analyst [Veridian 9-10].

1.1.2. AIDE.

AIDE, as opposed to CIDDS, remains a research project developed under AFRL in

Rome, NY and is not currently used as a production system. However, it has been deployed

2

www.manaraa.com

to approximately twelve DoD locations for testing purposes. The system itself operates

much like that of ASIM/CIDDS, but does not incorporate a proprietary means of pulling

data off of the physical network. Instead, it integrates output from a number of commercial

IDSs to populate its Oracle database, which makes up the bulk of the system. For this rea-

son, AIDE can be considered an IDS data repository vice a true NIDS, as is the case with

ASIM/CIDDS. Once the packet data is in the database, analysis can provide a complete

picture of network intrusions regardless of the information's source. Detailed reports and

visual models are employed to better represent the information.

1.2 Problem Statement

Since both systems are inherently focused around the database they employ, it

would be a natural assumption that the database would be one of the potential bottlenecks

within the overall architecture both in terms of performance and representation of data.

Due to Oracle's relational structure, there are several areas that may affect the database's

ability to sustain a level of performance consistent with the high-speed networks on which

it is deployed:

• Relational Management Overhead. In both cases, a relational database is used and

when data is inserted, table look-ups must be performed and foreign keys defined

to maintain any 1:1, 1 :N, or N:M relationships inherent to the information. This

means that the ASIM objects and AIDE data to be inserted must be broken down

and additional identifiers must be produced to uniquely identify each set of data.

• Persistence Storage vs. Transaction Performance. Data persistence refers to the

idea of accessing information even after the program that created it has terminated.

Databases, in general, provide a storage mechanism to achieve persistence [Loo-

mis 17]. As previously indicated, one of the main problems with relational data-

www.manaraa.com

bases involves the overhead in storing and retrieving information to achieve data

persistence when table look-ups and joins are performed. Both the ASIM and

AIDE systems must convert data from the physical network into a form that can be

inserted into a relational database for storage. In ASIM, the conversion process

takes the data off the wire and builds an object from the data using C++. The next

conversion occurs when the object is transmitted from ASIM to CIDDS via a Java

communication program. Finally, the object is broken down and inserted into the

database, in which case the data within must be mapped to the relational database

structure through table lookups and insertion of foreign keys. Foreign keys are

used by a relational database designer to link tables together to form relationships

and may either be created by the designer/programmer or automatically by the

DBMS. This object-relational mapping is relatively slow when compared to other

storage techniques [Larson 209]. In terms of performance, the database in the

AIDE system can handle 150-200 transactions/sec. In ASIM, packet data are

inserted into the database at several thousands of transactions/sec.

Object-Oriented (OO) Programming Integration. RDBMSs revolve around

tables. Using the Structured Query Language (SQL), a program may insert and

query the information contained within the RDBMS tables. This means that if a

programmer using an object-oriented programming language is to interface with

the database to manipulate data, SQL must be embedded somewhere within the

code to translate an object's attributes to the table structures defined within the

www.manaraa.com

RDBMS. The SQL statements themselves can require a substantial amount of

code, to include the code needed to convert data types used within the object to

data types that the RDBMS can store.

Complex Data Types. Relational databases are only able to store data of a prede-

termined type. When a database ships for market, the data types (e.g., int, char,

string, memo, etc.) are embedded into the system and any data inserted into the

database's tables must be broken down to match these types. In the application

domain, types may include not only those that the database can work with, but also

more complex data types developed by the programmer to handle many different

kinds of information across various domains. One example is the use of inherit-

ance. An Officer object may be of type Person, in which case the programmer

would most likely save the Officer attributes in the database under the table

OFFICER. However, the semantic information, namely that which shows the hier-

archical inheritance structure, has disappeared and it is unclear when looking at the

database whether or not an Officer inherits attributes from Person or is com-

pletely independent [Loomis 77]. The logic code for determining this inheritance

hierarchy must be inserted into the code so that when an Officer is read back into

the application from the database, it is instantiated as type Person. This also con-

tributes to the increase in code size associated with embedded SQL statements.

Distributed Systems. A distributed database has yet to be deployed in either sys-

tem and will undoubtedly cause additional problems with administration. It is

unclear how Oracle will handle the load when working across multiple sensors on

www.manaraa.com

a distributed network considering the basic difficulties of partitioning, data replica-

tion, and schema evolution [Larson 57-58]. Distribution will allow the data to be

replicated to deal with single points of failure. As it stands, data is centrally stored

at a particular site. However, to insure data availability, data needs to be replicated

between multiple sites within the hierarchy so that if one director's data is unavail-

able, it may still be retrieved from a mirror site on the network.

1.3 Research Hypothesis

In dealing with the above problems and needs, a new storage technique is desired

which can increase performance, allow the system to be easily distributed, and eliminate

many of the data conversions necessary when dealing with a relational database. One alter-

native would be an object-oriented database management system (OODBMS). My hypoth-

esis is that a distributed OODBMS (DOODBMS) will provide the following enhancements

over the current and conventional RDBMS:

• Improved performance in inserting events, and subsequently, other data into the

database. The research in this thesis primarily involves insertion throughput.

However, query throughput is also tested.

• Allow for distribution of the overall system to alleviate single points of failure

resulting from a loss of database connectivity.

• Provide a standardized OO programming base for the system as a whole. By stan-

dardizing to the OO model, developers will not be faced with maintaining pro-

grams written in multiple languages without a model guiding the process. In the

AIDE system, for example, programs to retrieve data are written in Perl, Java, C,

www.manaraa.com

Oracle ProC, lex/yacc, and others. The use of a DOODBMS and common 00

structure that must exist to utilize it will allow for more software reuse and easier

maintenance of the entire system.

The following are ways in which a DOODBMS may be used to address specifically

the limitations and problems with the RDBMS:

• Data Persistence. DOODBMS' primary goal is to provide object persistence.

When a program is executed, instantiated objects may be either transient or persis-

tent. In the case of persistent objects, objects are saved to permanent storage so as

to survive the termination of the program in which they were instantiated. When

using a DOODBMS in an object-oriented programming (OOP) language, the pro-

grammer may deem an object persistent and from that point on does not care

whether or not the object is in memory or being retrieved from disk. In essence,

data on disk mimics that in memory and no additional mapping is needed to form

associations between data objects since the entire hierarchy is being maintained.

This is known as single-level memory [Kroenke 490-491]. In relating this to

ASIM/CIDDS and AIDE, it is possible to build a sensor that can take packets off

of the physical network and convert them into persistent objects almost immedi-

ately. From that point on, provided that the objects were successfully inserted into

the DOODBMS, the objects are available to other processes regardless of the sta-

tus of the process that placed them there. As a result, there is far less overhead

associated with placing objects into the database than there is in mapping them to a

particular relational storage schema through lookups and foreign key generation.

www.manaraa.com

00 Program Integration. The DOODBMS also provides programming interfaces

that are fully integrated with OOP languages. In the case of Objectivity/DB, the

DOODBMS used in the programming portion of this thesis, interfaces are pro-

vided for C++, Java, and Smalltalk. As a result, the programmer can build rela-

tionships within the context of the language used, such as using arrays of pointers

and references, and need not convert to 1:1, 1 :N, or N:M relationships consisting

of foreign keys and other constructs to maintain the structure of the complex data.

However, it is understood that SQL queries may be necessary in some program-

ming environments and non-object-oriented applications may need access to data.

For this reason, a SQL parser and ODBC package is included with Objectivity/DB.

Distribution through a Federated Database. Objectivity/DB also provides for a

distributed architecture known as a federated database. In such a system, the data-

base is a loosely-coupled distributed DBMS, but with certain facilities not imple-

mented to allow for easy administration from a single node and local processing of

data [Larson 46]. This means that schema changes can be made available at one

site and propagated down through the hierarchy while older data, conforming to

the older schema, are still maintained through a process known as versioning.

Databases may also be coupled from site to site so that objects manipulated at one

site are updated at all of the others. This is known as data replication, which aids

in fault tolerance. In an IDS, the data that comes in from the sensors is managed

and stored locally at that sensor's director. When distributed, directors may have

www.manaraa.com

full access to any other director's database located within the federation and might

also replicate the data amongst multiple databases, thus avoiding a single point of

failure.

1.4 Scope

This research will consist of replacing the Oracle database used in AIDE with

Objectivity/DB and analyzing the overall performance characteristics within a controlled

environment. To effectively measure the performance increase and the effect of distrib-

uting the database across a heterogeneous network, the following activities must be dem-

onstrated:

• Sensor monitoring and data retrieval from logs and other data stores kept by a vari-

ety of sensors

• Passing of information to both a single site and multiple distributed sites

• Insertion of data into the database with both the data replication and fault tolerance

features implemented

• Retrieval of information via Java tools

As an additional contribution to the system, the object model will establish an OO

base to be used by the database and applications accessing the data. The OO base allows

designers to provide a solid architecture to programmers and database administrators,

which aids in both maintenance and software evolution.

Both ASIM/CIDDS and AIDE are systems that may benefit from DOODBMS tech-

nology. In fact, this approach may be applicable to any IDS data repository that uses OO

programming and may need to deploy a DOODBMS as a robust, high-speed database solu-

www.manaraa.com

tion. Due to the availability of data, database schema, scripts, and other crucial pieces of

information by AFRL, modeling of the 00 system using a DOODBMS will revolve around

requirements for future AIDE releases.

1.5 Assumptions

• Standardized test data will be produced locally by ISS's Real Secure NIDS analyz-

ing streams of test packets produced by Nessus. [RealSecure; Nessus]

• The object model and DOODBMS architecture will be built with the assumption

that the data will eventually be distributed across a number of systems monitoring

multiple sensors.

• Agents, XML, and other object-related systems will be used in the future to report

and use information stored in the database. C++, XML, and Java are the program

languages and structures of choice at this point. Although this seems to go against

the hypothesis that using multiple languages is undesirable, what is of major

importance is that the object model and objects instantiated by the system remain

intact regardless of whether or not they are currently used by an analyst or stored

in the database.

1.6 Thesis Organization

The thesis is divided into six chapters. Chapter I states the hypothesis and gives

background into the problems facing the IDS data repositories currently being used. Chap-

ter II gives additional background information and provides knowledge necessary for

understanding the various systems, databases, and architectures used throughout this thesis.

Chapter III describes the methodology used to rebuild the AIDE system into one that uses

the DOODBMS. Chapter IV demonstrates the used of the methodology by developing the

10

www.manaraa.com

Object-Oriented Automated Intrusion Detection Environment (OOAIDE). Chapter V tests

OOAIDE by inserting and retrieving information, and presents observations of the 00

application and the system's distributed architecture. Finally, Chapter VI presents the con-

clusion giving the results of this research and additional future areas of research involving

OOAIDE.

11

www.manaraa.com

II. Literature Review

This chapter describes the two USAF IDS data repositories that serve as candidates

for conversion to DOODBMSs, reviews literature describing and contrasting the function-

ality of RDBMSs and OODBMSs, provides documentation on basic 00 design and distrib-

uted database features important to an IDS, and gives a general overview of Objectivity/

DB.

2.1 Current USAF Supported IDS Data Repository Initiatives: ASIM/CIDDS & AIDE

This thesis will concentrate primarily on two of the USAF conducted research ini-

tiatives involving intrusion detection. Although the two initiatives are very similar in

nature, a few differences are discussed that set each apart from the other. These two

projects were chosen over COTS products because of their ability to provide unique solu-

tions to two current USAF data collection needs. ASIM/CIDDS provides the ability to col-

lect large amounts of data concerning every connection made to any government system on

the networks that it protects for forensics purposes and AIDE has the ability to consolidate

intrusion related data from a variety of sensors already deployed within the DoD on heter-

ogeneous networks.

The Air Force's primary IDS/IDS data repository, ASIM/CIDDS, consists of two

distinct subsystems that are completely dependent on one another. Both subsystems consist

of dedicated hardware and software packages that are used to support the AFIWC Intrusion

Detection Tools (IDT) program. The architecture of the overall IDS is designed around a

hierarchical tree-like structure with a node at the Air Force Computer Emergency Response

Team (AFCERT), which acts as the primary data store and fusion center for all network

information collected by the various MAJCOMs. Under each MAJCOM lies a number of

ASIM sensors that remotely collect and send information, and possible alerts, back for fur-

12

www.manaraa.com

ther analysis. The descriptions presented here are inherent to version 3.0 of both ASIM and

CIDDS, which were being deployed at the time of this writing.

Figure 2-1. ASIM/CIDDS High-Level Architecture

AFCERT
Primary Data Repository

Oracle 8i

Base/Organization Level
Deployed ASIM Sensors

2.1.1. ASIM

The USAF standard for the IDS, ASIM, acts as a remote sensor to CIDDS. The

sensor sits at the front of a network and is the first network asset to intercept a stream of

data before it is routed to its next destination. As a sniffer, it passively pulls data from the

wire. As an IDS, it then analyzes the data to look for signatures defined within its rule set

that constitute a violation of network policy. The sensor operates in real time and alerts of

an intrusion attempt are passed to CIDDS.

ASIM is associated with two different representations of the same data. The raw

data, which are packets kept in non-human readable form, are stored locally to the ASIM

hard drive and optical removable media. CIDDS is required if an operator or analyst needs

13

www.manaraa.com

to remotely retrieve and convert the raw data to ASCII. The second type, connection data,

is parsed from the raw and sent to CIDDS located at one of twelve MAJCOMS on a Virtual

Private Network (VPN) connection via the Java Communications Process (JCP). The con-

nection data contains information concerning the actual interaction of one computer to

another, such as source and destination Internet Protocol (IP) addresses, source and desti-

nation port numbers, protocol used throughout the transaction, and the duration and status

of an existing connection. Load balancing and fault tolerance features are built into ASIM

to detect when a director is unavailable for data retrieval due to an outage or saturation, in

which case another director is used as its storage medium.

ASIM hardware architecture centers on the SecureCom 6000 module SC6000-

DUAL. According to Intrusion.com,

"The SecureCom 6000 family is a flexible chassis-based
system that integrates network and application servers, fire-
wall, VPN, intrusion detection, routing, and LAN ports into
a single compact, fault-tolerant platform. The platform can
be configured to provide whatever functionality your LAN
requires in a manageable and coherent structure." [Secure-
Com]

In other words, the system functions as a black-box solution. The SC6000 module used in

ASIM version 3.0 contains:

• Dual 600MHz Pentium III Processors

• 256Mb RAM

• FreeBSD Operating System

• 18Gb Hard Drive

100 Base-T Ethernet Connectivity

14

www.manaraa.com

2.1.2. CIDDS

CIDDS is a much larger system consisting of an Oracle 8i database, Java Graphical

User Interface (GUI), and some degree of Artificial Intelligence (AI). Its main function is

to retrieve information sent to it by a number of ASIM sensors located throughout the oper-

ational Air Force on independent homogenous or heterogeneous networks. The subsystem

simply gives ASIM a centralized, long-term storage capability and allows USAF analysts

to correlate data to detect network intrusion attempts, possible misuse violations, and other

unauthorized activities. Furthermore, it functions as a trend analysis and historical data-

base for activities that involve multiple networks or that constitute attacks over long periods

of time.

CIDDS is concerned with connection and event-related data routed from ASIM.

Upon receiving connection data, CIDDS either parses the stream so that it may be inserted

into the Oracle 8i database using standard SQL or, when the data is more critical, forwards

the data to a higher-level director, such as AFCERT. Any incoming alerts are routed to the

GUI for analysts to view. CIDDS is, in all practicality, the workbench and storage mech-

anism for the analyst. The database stores information on protected domains, sensor loca-

tions, connections between systems passing through USAF networks, actual events or

alerts, and histories of events for trend analysis.

2.1.2.1. CIDDS Database

The Oracle 8i database used to maintain data for ASIM and CIDDS is of pri-

mary concern in this thesis. Without the database, the system is relatively useless when

analyzing and correlating events.

There were many optimizations made over the basic installation of Oracle 8i to get

the CIDDS database to the point of handling several thousand transactions per second.

First, the database is partitioned day-to-day to limit the search space that a query will make

in finding data. For example, if an analyst wishes to see data collected 48 hours previously,

15

www.manaraa.com

then the database would map the query to the partition on the disk that contained the data

versus searching the entire database. In effect, the partitioned disk becomes a circular

queue. An index is stored on the same partition that contains the data that it indexes, thus

further limiting the search space.

PL/SQL, Oracle 8i's procedural language that enables a database administrator to

mix SQL with program units such as procedures, functions, and packages, is also used to

optimize some of the queries that take place on the database [Oracle Glossary-6]. Stored

procedures are used in conjunction with the database cursor to keep join overhead to a min-

imum during information retrieval by keeping certain predetermined pieces of information

cached in memory so they do not need to be retrieved from disk when a query is issued from

the GUI Server. The same procedures cache and store alert data from ASIM even before it

is inserted into the database so that an alert may be delivered to an analyst's GUI without

the analyst having to access the database tables to retrieve the information. This is an

important optimization, since disk retrievals are more expensive in terms of time when

compared to memory access.

2.1.3. AIDE

The second distributed IDS initiative, AIDE, is being developed as the next gener-

ation system for the Department of Defense (DoD) under AFRL. As part of the Extensible

Prototype for Intrusion Control (EPIC) program at AFRL, which includes such systems as

the Air Force Enterprise Defense (AFED) initiative, AIDE serves as a in-depth detection

system in "identifying deviations from normal operational states in the enterprise in real

time and predictively from network, computer, and open-source indicators [AIDE]."

Although similar to the ASIM/CIDDS architecture, there are a number of characteristics

that set this system apart from ASIM/CIDDS and other COTS solutions.

Unlike ASIM/CIDDS, the primary focus of AIDE is not the interception of network

traffic for analysis. AIDE'S main goal is to fuse data from multiple sources to build a com-

16

www.manaraa.com

plete picture of current network status and intrusion attempts. The raw data itself has

already been captured, parsed, and processed by one or more commercial IDSs or network

tools and just needs to be imported into the database for storage, correlation, and analysis.

Such network tools may include routers, IDSs, firewalls, or any other mechanism capable

of producing local log entries, streams of data, or database entries based on sensor reported

information. CIDDS itself is one source of information for AIDE.

2.1.3.1. Architecture

The architecture of AIDE is relatively simple considering the task. When a

network tool or IDS captures an event, a signature is produced by that system. There are a

variety of methods by which the information ultimately gets entered into the database.

• Taps and bridges. A tap runs on the sensor machine that captures traffic and cre-

ates a connection to a bridge located on the Oracle database machine. The taps are

small C, Perl, or lex/yacc programs that are built to use as few resources as possi-

ble so as not to interfere with a sensor's normal operation. The bridges are respon-

sible for taking data, or signatures, read from the tap and parsing them for insertion

into the database. A bridge and tap combination exists for most of the GOTS and

COTS sensors or tools expected on the network, which may include Raptor, JIDS,

Snort, and others [Raptor; JIDS; Snort]. Most of the data that is sent up via a tap

resides in a file on the sensor system, which is read periodically by the tap.

• Data Streams. In some cases, data is streamed directly into a port at a site where

the database is placed. Special bridges listen to those ports and intercept any

incoming binary streams of information. Most often, routers and some firewalls,

17

www.manaraa.com

such as Sidewinder, take advantage of this more direct route [Sidewinder]. How-

ever, some IDSs, such as NetRadar, also have the capability to stream data [NetRa-

dar].

• ODBC. And the last method by which data is entered involves a simple connec-

tion to Oracle through ODBC. The Real Secure tap, which reads its data from an

Access database, uses this method. In reality, the data may be extracted from both

log files and other databases (Access, Oracle, SQL Server), parsed, and then

inserted directly into Oracle.

The database then takes the data and uses a complex set of database triggers to filter

it, determine which set of tables are involved, and complete any additional processing.

Figure 2-2 shows an example of AIDE's architecture using the tap/bridge combination.

As seen in the diagram, once the data is in the database, the correlator is used to

correlate data from multiple sensors so that the actual activity that produced the signatures

can be deduced. For instance, a portscan may be conducted on a network from the outside.

Several sensors may pick up this activity and enter it into the database as separate events.

Instead of reporting each of these as separate attacks, the correlator correlates the findings

of the sensors and hopefully reports them as a single portscan.

The actual layout of the systems is hierarchical in nature, much like that of ASIM7

CIDDS. The databases are located at sites distributed throughout the DoD, which are nor-

mally associated with a base or organization. Below those sites lie hosts. A host is any

machine, whether computer or router, that is located within the domain of the site. A sensor

resides on a host. The database is set up to allow a host to run many sensors, but ordinarily

only one sensor resides on a given host. Figure 2-3 gives a representation of a site and its

hosts located on a typical network. In practice, all the hosts actually have information

stored in the database. Through the use of a tool such as nmap, information can be gathered

18

www.manaraa.com

from all the hosts on the network [Nmap]. That information may then be placed in the data-

base to give a detailed look at all the systems in the domain, regardless of whether or not

they will report any event activity.

Figure 2-2. AIDE Tap/Bridge Architecture Diagram

Tables and Triggers

/

Analyst Workstation

*\

19

www.manaraa.com

Figure 2-3. Layout of Sites and Hosts

IDS/HOST

2.1.3.2. Database

The database currently being used with AIDE is also Oracle 8i. In keeping

with AIDE's primary function, the smallest details concerning each and every connection

are not handled by the system. Instead, AIDE concerns itself with keeping track of signa-

tures and events thrown by other systems and correlating those signatures into a single, nor-

malized AIDE signature.

There are a few enhancements made to the basic database installation, but not quite

as many as in CIDDS. This is mainly because AIDE functions as a research system versus

a full production system. However, there are strains on the database that are a result of

many different sensors throwing multiple signatures simultaneously. To handle the input,

AIDE uses a disk separated into seven separate partitions, one for every day of the week.

As each partition is reused, all of its data is copied to a separate table located on a non-par-

titioned disk, which serves as long-term storage. This technique, as stated before when

describing CIDDS, reduces the search space significantly. The tables used within the data-

base do not differ significantly from those of CIDDS. Below, Figure 2-4 shows a simpli-

fied relational schema of the AIDE database.

20

www.manaraa.com

Figure 2-4. AIDE ER Diagram

The database has two significant portions, SITEs and EVENTs. All the other tables

either establish a hierarchy to the information, such as a SENSOR belongs to a HOST,

which belongs to a SITE, or tables that associate tables with each other. Association tables

include INCIDENT_EVENT, EVENT_CATEGORY, HOST_SERVICE, and others that

follow the same naming scheme. The unique portion of this schema, and the portion that

separates it from that of CIDDS, is the portion involving the SENSOR_SIGNATURE and

AIDE_SIGNATURE tables. Using these, along with the SIGNATURE_CATEGORY,

multiple signatures from various IDS packages may be combined into a single AIDE sig-

nature to aid in data reduction. An example may be a number of IDSs that see a portscan

on a network, but each has a different event code in their log file for reporting the event.

Using the signature tables, AIDE combines those codes into a single signature and category

21

www.manaraa.com

so that analysts do not concern themselves with the low-level information produced by the

individual sensors.

To facilitate the need for information from a site other than the one to which an ana-

lysts initially connects to, links are used throughout the database that 'point' to tables in the

databases located at other sites. In essence, data is only entered into the database once and

it resides at that particular location. In doing this, the AIDE system may ensure the integrity

of the data. This means that if a site goes down for any reason, then its data is also unavail-

able.

2.1.4. System Comparison

Both systems closely represent the common IDS architecture as proposed by

Ranum [Ranum]. There are information-gathering mechanisms, storage for long-term or

short-term analysis, and reporting engines in both implementations. As far as the database

is concerned, there are even a number of similarities that allow one to see a common set of

attributes being collected and stored. For instance, both keep information on hosts contain-

ing the systems and events thrown by those sensors. The particular fields collected on con-

tain IP addresses, types of attacks, and ports hit with the attack. There are only so many

ways to parse packet information. However, there are major differences, some of which

were pointed out earlier within the system descriptions, which make each system stand out

in a particular environment.

ASIM/CIDDS are built for a high-speed environment where all possible connection

data must be collected for forensics purposes. This has led to a very robust and optimized

solution, in which both parts of the system are pushing the limits of both the hardware and

software on which they run.

AIDE, on the other hand, is primarily suited for correlation of events where the net-

work data has already been sifted through and, compared to the amount of traffic on the

network, fewer entries need to be inserted into the database. This has allowed AIDE to sur-

22

www.manaraa.com

vive without quite the number of optimizations that have been built into ASIM/CIDDS. It

was mentioned earlier that ASIM/CIDDS has an estimated data storage rate of several thou-

sand transactions per second. By contrast, AIDE tops out at about 200 entries per second

due to its intense use of Oracle triggers for event management and correlation.

ASIM/CIDDS are considered a "closed" design. This simply means that they work

hand in hand and with no other sensors or data collected. This will most likely change in

the next release of the product, but it is how the system remains at the time of this writing.

Everything input into the database is a result of the ASIM sensor. AIDE is designed to

work with a number of systems, to include CIDDS, NetSquared's NetRadar sensor built

under AF contract, DISA's JIDS, Symantec's Raptor, Secure Computing's Sidewinder, and

ISS's RealSecure [JIDS; Raptor; RealSecure; Sidewinder]. Whereas ASIM/CIDDS seem

to be more USAF oriented and proprietary, AIDE is a rather "open" system more centered

towards heterogeneous DoD networks. CIDDS designers are currently working on a tap to

allow CIDDS data to be sent to AIDE.

2.2 Object Persistence

Object-oriented (OO) systems promise to solve real problems with greater reliabil-

ity, increased programmer productivity, and a greater degree of modularity within the code

produced [Loomis 1]. Through the years, IDSs have mainly been coupled with relational

databases to store information that would be needed for future use. Although this seems

logical since relational databases have become the standard for data storage on hard media,

there are many limitations and performance issues that arise when translating objects into

a data format that can be used with standard SQL for manipulation by a relational database.

As an alternative, object-oriented databases were built to provide OO systems with

a means of storing data persistently across executions of programs built around an OO

design. The database literally becomes an extension of the OO language, so that the lan-

guage itself supports the database specification and maintenance [Montgomery 81].

23

www.manaraa.com

To be considered an OODBMS, several key features must be present. The database

must provide a means of forming data items into elements such as records or objects. There

must also be a way to group objects into complex data structures, such as lists, relations,

sets, bags, and trees. There must be a way to query and access stored information while

providing operations to create, modify, and delete data structures. And finally, as men-

tioned previously, there must also exist a means to store objects persistently [Montgomery

82].

2.2.1. What is an object?

00 programming is based on an atomic entity known as an object. A software

object, formed from the union between state and behavior, is an independent encapsulated

representation of real or virtual world things; living or non-living. As Pierre-Alain Müller

points out, "The size of these objects varies a log: some are small, like grains of sand, and

others are very big, like stars [17]." He also points out that objects may not have any mass.

Given OO modeling and programming, software can capture all of these entities as soft-

ware objects.

To be an object, there are a number of characteristics that the entity must possess:

Object = State + Behavior + Identity

1. State. This refers to the group of attributes that an object contains at a given point

in time. Attributes are pieces of information that qualifies the containing object

[Müller 19-20]. For example, a person object may contain a name, age, height,

and weight. In one state, the age may be 23. In another state, the age may be

changed to 24. The change in age demonstrates one basic rule concerning states;

states evolve with time.

24

www.manaraa.com

2. Behavior. This refers to the abilities of an object, which translates to actions and

reactions. In programming, these are referred to as operations. Operations are the

result of a message sent from one object to another or a message sent from an

object to itself [Müller 20]. To extend our person analogy above, the person may

have operations such as run or walk.

3. Identity. Each object must somehow be identified from all other objects that con-

tains exactly the same attributes and operations. Although it is implicit and nor-

mally relies on memory addresses or some other system-level object identifier,

there are sometimes natural identifiers that are contained within each object, such

as a name, SSN, or college ID number [Müller 21].

Objects also have messaging categories by which they are created, destroyed, que-

ried, and manipulated. Messages create the fabric by which objects communicate between

themselves. Below are the five main message categories [Müller 24].

1. Constructors: create objects

2. Destructors: delete objects

3. Selectors: return all or part of the state of an object (get methods)

4. Modifiers: change or manipulate all or part of the state of an object (set methods)

5. Iterators: visit the state of an object or access a data structure that contains a num-

ber of objects

25

www.manaraa.com

2.2.1.1. Classes

Objects, in general, are far too complex to be understood as a whole at one

time. There may be thousands or millions of objects to work with (consider the number of

stars) simultaneously, so designers of systems must group various types of objects together

and focus their thinking. This leads to a more abstract method of object representation,

known as a class. A class is a description of an object without reference to state. Since

many objects simply look alike and contain the same attributes, then a class may describe

multiple objects. Objects, therefore, are instances of classes and are built during program

execution through a process known as instantiation [Müller 30]. Classes are to objects

much like Schemas are to databases. When a database is built it contains a schema that

describes the columns and ranges of values that those columns may take as valid argu-

ments. Although the database may be completely empty of any actual rows containing

information, the schema still exists as a description of the database. In much the same way,

a class exists as a description of objects to be built, whether or not objects or that class have

actually been instantiated.

Table 2-1. Graphical Representation of Class Using UML

Person (Class Name)

(Attributes)
name
age
weight
height

(Operations)
run()
walk()
Person() - Constructor
setName() - Modifier
getNameC - Selector

Table 2-1 shows a graphical representation of a person class using the Unified Mod-

eling Language (UML). UML is one of the methods by which 00 designers build and

26

www.manaraa.com

model 00 systems and will be used throughout this thesis to describe classes and their rela-

tionships.

2.2.1.2. Relationsh ips

Communication must exist between objects so that messages may be passed

from one object to another. In modeling classes, there is also a method to represent these

links known as association. One other method, known as aggregation, is also used to rep-

resent a stronger coupling between classes [Müller 36-39].

1. Association. An association expresses a bi-directional, semantic con-

nection between classes. Whereas a link describes the communication

path between instantiated objects, an association describes the path of

communication between classes. An association is independent of the

classes and just reflects the connection between classes that exists in

the application domain.

2. Aggregation. As stated previously, an aggregation is a stronger cou-

pling between classes than that of an association. It is purely logical

and in actual implementation, is not handled any differently than a nor-

mal association. As an example of an aggregation, consider a compo-

sition. A car has an engine and wheels. Although a car would be

associated with both of them, that association would be considered a

composition due to the fact that a car must have an engine and wheels

to be considered a normal car.

27

www.manaraa.com

2.2.1.3. Generalization and Specialization

Generalization and specialization may be implemented the same way within

the object hierarchy, but the two are actually opposite concepts. Most often, inheritance is

used to show classification between classes. Inheritance is discussed later in this section.

When multiple classes may be abstracted to produce another common class

that contains some of their like methods and attributes, a generalization emerges. The

resulting common, shared class is known as a superclass. Figure 2-5 below shows an

example of generalization. [Mullef 40]

Figure 2-5. Generalization Example

Student

~5~

Graduate Doctoral

In the example, each of the leaves at the bottom are types of students, and

thus share a number of properties. The shared properties are migrated to the Student class,

such as name, graduation year, address, etc.

By contrast, specialization involves taking a superclass and breaking it into

specialized pieces. Whereas generalization is a bottom-up design decision, specialization

is a top-down decision, which normally is used to provide reuse and extension of the super-

class. [Müller 41]

One of the more common ways to provide generalization and specialization

is through inheritance. Inheritance is a method by which classes inherit methods, attributes,

and sometimes constraints from the superclass. In the above example of generalization, the

Student class may contain methods to calculate GPA. All three of the subclasses may use

this method and do not need to contain their own version of the method to do so. They call

the method from Student as if the method actually existed in the subclass.

28

www.manaraa.com

2.2.2. Relational vs. Object-Oriented Implementations

An RDBMS and an OODBMS differ from each other in a number of ways. Table

shows some of the more fundamental differences [Blaha 182-187].

Table 2-2. RDBMS vs. OODBMS Comparison

RDBMS OODBMS

Data presented in tables Data maintained in object form

Operators for manipulating tables
(SQL)

Proprietary database manipulation
language or ODMG standard

Constraint checking provided in
database

Constraint checking provided by
programmer in 00 language

Slow navigation between objects
(joins are costly)

Fast navigations among objects
since no joins are necessary

Mature theory and standards Immature technology (debatable)

Distribution difficult Distribution inherent to design
(dependent upon database)

2.2.2.1. Object Persistence and the RDBMS

In order for information to remain persistent through executions of an 00

program, a data store is necessary to hold information pertaining to the objects and relation-

ships between them. When using an RDBMS as the storage medium, a number of tech-

niques are used to bridge the gap between the object and relational representation of the

same data.

• Swizzling. Object persistence using an RDBMS is achieved mainly through the

definition of table structures that represent the objects to be saved. When an object

needs to be written to disk or modified in some way, a method is called within the

program containing the object which contains SQL that inserts, deletes, or updates

the attributes of the object in its given table [Kroenke 488-485].

There are a number of concerns that arise when this process begins. First, the

29

www.manaraa.com

object must have a unique identifier for the database to use as a primary key.

When an object is in memory, it has a unique address in memory and handler

within the program that identifies it from other objects. Thus, several objects can

have the exact same attributes, but can always be identified by the program as

being unique, individual objects. When that object is to be made persistent, the

RDBMS needs its own way of identifying those objects, since no two tuples in a

table can have exactly the same column values and still be considered unique. One

way to handle this issue is to have the object keep a separate attribute that equates

to a primary key and use this attribute as its primary key within the database. This

key

Figure 2-6. Object to Relational Mapping Using OID

Class

Object Distances' Database Table

Greg: Person
35
67 ,,

i male Jack: Person
28
75
male Betty: Person

42
63
female

PERSON

OID name age height gender

1 Jack 28 75 male

2 Greg 35 67 male

3 Betty 42 63 female

is often referred to as an object identifier (OID). When an object is deleted from

memory, it can then still be identified from those that are in the same process

30

www.manaraa.com

[Kroenke 489]. The process of translating a memory address to something the

database finds more useful is known as swizzling [Kroenke 487]. Figure 2-6

shows an example of swizzling between an 00 program and an RDBMS. Note

that the OIDs in this case are user-defined.

Associations. Since an object cannot directly be made persistent using its own

address, associations between objects must also be translated in some way so they

remain intact while being stored in the RDBMS. In an 00 program, associations

are simply memory pointers or references between objects so the program can

relate one object to another. Pointers and references rely on memory addresses

that remain fairly constant while the program is executing. Once a program ceases

execution, the memory addresses used by its objects are generally returned to the

operating system for use by other processes. When the process of swizzling is

used to keep track of objects within the database, the objects must also pass their

OIDs to any objects that reference them. This can create a problem when, say

object_A is deleted, but object_B's association with object_A remains intact. In

essence, the memory address that object_A was located at is no longer being used,

but the OID located in object_B is still being used by the database to keep track of

object_B's associated objects. This means that when we make even a subtle

change within the process using the objects, those changes must somehow be sent

to the database so the executing process and database are synchronized [Kroenke

489].

Associations between objects may also spawn new tables. When a program needs

31

www.manaraa.com

a many-to-many relationship defined, a new table containing the foreign keys of

each object must be populated. This simply adds to the space requirement of the

database and causes additional updates and maintenance for administrator and pro-

grammer alike.

Programming Code. The amount of code needed to make objects persistent is also

an issue. Primarily, in an OO program using an RDBMS for storage, there are a

number of conversions that must be performed to get the data into a relational

form. The following table, Table 2-3, shows one instance of possible program

flow in an OO program using object-to-relational mapping techniques. Notice that

when one change or action is performed within the OO environment, certain exten-

sions to the program are necessary to accommodate the RDBMS and keep the

database itself current.

Table 2-3. Extensions Needed When Utilizing an RDBMS

Object-Oriented Application RDBMS Extensions

Execution begins. Connection to RDBMS made. Tables built (if
necessary).

Objects instantiated and populated. OIDs created within objects for database
identification.

Associations made between objects (pointers
and references).

OIDs passed between associated objects.

Objects save method called. Save method creates SQL INSERT statement,
which maps the object to appropriate table
and columns.

Associated objects' save methods called
(recursively).

Again, save method produces SQL statement,
but uses parent OID as a foreign key to main-
tain association.

Objects are modified. Update method called. SQL UPDATE statement used to update
appropriate fields within record.

Objects are deleted. Delete method called.
Its association to other objects is NULL.

SQL DELETE statement deletes record from
database just prior to object actually being
deleted. Additionally, associations are found
and deleted from database (lookups).

Program terminates. Database maintains objects.

Execution begins. Connection made.

32

www.manaraa.com

Table 2-3. Extensions Needed When Utilizing an RDBMS

Object-Oriented Application RDBMS Extensions

Objects instantiated. Read method called. Attributes are read from database, also plac-
ing OIDs into objects.

Associated objects instantiated (recursive).
Read method called in each.

Attributes read from database, and OIDs are
passed between objects. If a to-many associa-
tion exists, OIDs must be passed to objects on
both ends of an association.

Execution Continues

The resulting situation is that the amount of code needed to keep an object persis-

tent throughout the object's lifetime becomes a substantial part of the program in

general. The additional code can cause program bloat that may ultimately result in

more programming bugs, slower performance due to overhead, and an increas-

ingly large amount of maintenance in keeping the program SQL statements current

with the database schema. Put simply, RDBMS implementations generally inte-

grate poorly with 00 languages [Blaha 184].

• Strengths. The RDBMS does have its strengths. However, these strengths do not

apply to its implementation of object persistence. The technology surrounding the

RDBMS is fairly mature and advanced. As a result, it is generally considered

more stable. The RDBMS is also more business-rule oriented and is well-suited

for day-to-day transaction-based systems centering on normal business logic.

Finally, they are widely available and support is easily accessible [Blaha 184].

2.2.2.2. Object Persistence and the OODBMS.

Where relational databases are weak in their implementation of object per-

sistence, the OODBMS is strong. It should be noted, however, that implementations con-

cerning almost all areas of the OODBMS are vendor-dependent. Some are naturally

33

www.manaraa.com

distributed due to their particular use of OIDs, but most are not. Some interface with C++,

Java, and Smalltalk, while others pick and choose the languages that they will work with.

Of course, this is also true in evaluating performance and storage needs between database

implementations. Although Objectivity/DB was chosen as the database of choice for this

project, characteristics that are common to most OODBMS implementations will be dis-

cussed in this section as a general overview of the technology. Objectivity/DB specific

issues are discussed later in this chapter.

• Natural Language Extensions. Unlike the RDBMS, an OODBMS is built around

one or more 00 languages to integrate almost seamlessly into the native program-

ming environment. This means that there is no mapping mechanism needed to

parse an object and its associations into pieces for insertion into a relational data-

base. Instead, the persistence is built and compiled into the object and the database

that resides on hard media (i.e. hard disks) is treated as another source of memory.

The Figure 2-7 below shows the memory hierarchy.

Figure 2-7. Memory Hierarchy usingOODBMS

Real
memory

object

Mapping
function

Virtual
memory

object

Mapping
function

Persistent
storage

object

34

www.manaraa.com

Moving objects between system memory and persistent storage is almost com-

pletely transparent to the programmer. Objects are declared as persistent and when

they are created or modified, the changes are immediately sent to the database with

little programmer direction using an internally maintained OID. The exception

being that normally a transaction of some type must wrap the object when it is

used so that the executing program knows to check the database for the most up-

to-date copy of the object. Associations are handled in the same manner. Associa-

tions are declared ahead of time as links between objects. When the programmer

finally assigns objects to each end of the association, the OIDs of the objects are

placed in the database. The database and the executing program handle the OIDs;

at no point does the programmer define an OID for any object [Loomis 124-125].

Link Navigation. Traversal of the associations between objects is really where the

OODBMS gets its speed with highly complex data sets. In the RDBMS, joining

tables is the standard method of pulling information. The process is slow, tedious,

and can consume a large amount of resources depending upon the tables' sizes and

composition [Blaha 183]. In an OODBMS, associations are stored with the

objects and there is no need to join tables to get information. Instead, the database

follows the pointer (OID) to the associated object. An RDBMS is well-suited for

retrieving and inserting information from a database when a small number of

tables are involved and joins are limited [Blaha 183], but once the data set and

number of tables gets large, the OODBMS method of storing OIDs with the

objects becomes much more efficient.

35

www.manaraa.com

• User-Defined Data Types. As mentioned previously in Chapter I, complex and

user-defined data types are often needed to encapsulate and define information.

When

• Schema Evolution. It may be necessary to change the schema in a major fashion to

properly represent the data. From a programmer's perspective, this means that the

object-to-relational mapping code would need to be revamped as well. In an

OODBMS, the database schema would only need to change if the objects in the

programming environment also needed to change. There are usually special

schema evolution tools to handle this conversion, thus taking the burden of modi-

fying a large number of SQL statements off of the programmer. As an example,

Objectivity/DB contains a schema manager that automatically checks the database

against the objects that are currently in use and can be set to change the database

when differences are found, such as added fields, field name changes, added or

changed associations and added or deleted classes. Absolutely no intervention by

the programmer is necessary.

2.2.2.3. OODBMS in Practice (Objectivity/DB)

As previously stated, an RDBMS is well suited for small data sets where

table joins are at a minimum or where computations may take place over a large number of

records. Such systems could be thought of as simple transaction-based systems. When the

schema becomes very large, it is only natural for the number of associations between tables

to increase, or even the addition of new tables to handle many-to-many relationships. Com-

plex data sets are the primary reason why the Stanford Linear Accelerator Center (SLAC)

chose to use Objectivity/DB to store event data from its high-energy physics experiments.

36

www.manaraa.com

SLAC is an experimentation network of 800 physicists collaborating from more

than 80 sites in 10 countries. Its goal is to use big-bang energies to create B meson parti-

cles, look at collision decay products, and then find the anti-matter that should be present.

In all, the experiment is expected to produce between 200 - 400 TBytes of data/year for 10

years [Hanushevsky 2].

Initial plans were to include the use of a relational database as the main storage

mechanism. However, using tests from previous experiments, it was found that the object-

oriented approach outperformed the relational approach by factors ranging from 5 to 50.

These numbers were significant to the project, and thus an OODBMS is now being used for

data storage [Meyer 1-2].

Objectivity/DB itself was chosen for a number of reasons.

• It accommodates databases greater than 100TB in size.

• Includes optimized protocol for distribution (AMS) that is more efficient that con-

ventional network file systems (NFS).

• Uses page-based client/server architecture and memory cache to allow large num-

bers of objects to be accessed within a single transaction.

• It was found to scale better than many of its competitors to large numbers of

objects because of its memory cache (vice virtual memory).

The use of Objectivity/DB at SLAC is of great importance given the perceptions of

many database administrators that OODBMS technology is still too immature for large

projects [Kroenke 492]

37

www.manaraa.com

2.3 RDBMS to OODBMS Schema Transformation

In some cases, it may be necessary to translate a schema which was originally

developed for use in an RDBMS into one which functions well in a complete 00 environ-

ment and is used in an OODBMS. This would involve taking the database, tables, and col-

umns and converting them into containers, classes, and attributes (fields), respectively.

Such procedures are well understood in the 00 community as 00 programming

becomes more prominent. A thesis by Pedro A. Linhares Lima from AFIT describes seven

steps in translating a relational model to an object model; the steps are given below. These

steps, with a few additional procedures, are also described in more detail by Michael Blaha

et al [Blaha 451-454]. For this thesis, Linhares Lima's method is adequate:

(a) Prepare an entity-relationship (ER) model. Each table is represented as an

entity where candidate, primary, and foreign keys are determined based on

existing database [Lima 17-20].

(b) Prepare an initial object model. Each entity in the ER diagram is represented

as a tentative class and each relationship as a tentative association. All col-

umns within the tables become attributes of classes [Lima 20].

(c) Refine tentative classes. Combine classes that have the same schema into a

single class. Take out classes that were represented in tables for function and

constraint purposes. These classes normally do not participate in any foreign

key, and therefore should not have any associations [Lima 20].

(d) Discover generalizations. Look for large foreign-key groups and primary keys

composed entirely of a foreign key from another table. Generalizations may

also be seen where there are patterns of many replicated attributes and where

38

www.manaraa.com

there are patterns of data where a class has mutually exclusive subsets of

attributes. In many cases, attributes were pushed up a class or down a class to

conform to tables used in relational database since an RDBMS cannot entirely

depict inheritance [Lima 21].

(e) Discover associations. Convert tentative classes to associations when two or

more foreign keys make up the classes in question. Determine associations

based on distribution of foreign keys throughout classes and state maximum

and minimum multiplicities for each. Some associations will become aggre-

gations, where a class is "a-part-of' another class [Lima 21-23].

(f) Perform transformation. Look for transformations that were made to the orig-

inal relational database for the sake of improving time and/or space perfor-

mance. Some of these transformations involve transitive closure, lightweight

one-to-one associations, and the combining of associations and generaliza-

tions [Lima 24-26].

(g) Prepare a functional model. This model describes the computations within a

system. In a database system, this model is trivial given that its primary pur-

pose is to store and organize data. Preparing the functional model is achieved

through studying the user manual and forms and possibly interviewing users

[Lima 26].

2.4 Federated OODBMS

In the case of the AIDE database to be used in the experimentation portion of this

thesis, one of the main goals is to distribute the database across multiple sites to both aid in

39

www.manaraa.com

the collection of information from multiple sensors and allow updates to information

common to all the sites. The intention is to (a) divide up the information domain so as to

not tax any particular machine or portion of the overall system with collecting more infor-

mation than it can keep up with and (b) to be able to make changes to one portion of the

system and have those changes automatically distributed across the system's domain of

sites. To do so involves distributing a databases system using multiple component DBMSs.

2.4.1. Distributed DBMS (DDBMS)

M. Tamer Ozsu et al present one definition of the DDBMS [Ozsu 4]:

We can define a distributed database as a collection of mul-
tiple, logically interrelated databases distributed over a com-
puter network. A distributed database management system
(distributed DBMS) is then defined as the software system
that permits the management of the DDBS [Distributed
Database System] and makes the distribution transparent to
the users.

A DDBMS is essentially a set of component databases joined together via a DBMS

architecture that allows all the component DBMSs to communicate and function as a single

database system. The resulting DDBMS provides users access to stored data as if the data-

base system was a simple, centralized store where data is kept in a single database. The

fact that multiple DBMSs are actually participating in the storing of the data is completely

transparent to the end user. Note that a network is involved in a true DDBMS.

There are a number of advantages that DDBMSs are expected to provide:

1. Transparent management of distributed and replicated data. Transparent manage-

ment refers to the concept of hiding all implementation details from the end user.

Replicated data is data that exists at many different sites within the distributed sys-

tem. In providing these two main features, transparency and replication, the

DDBMS must provide data independence, network transparency, replication trans-

40

www.manaraa.com

parency, and fragmentation transparency [Ozsu 8-12].

In short, the DBMS must be able to provide the user with data without the user

knowing:

(a) What DBMS actually stores the data

(b) How the data came across the network to its final location

(c) If the data is located relatively close to the user's machine or if it exists at some

rather remote site

(d) Whether all the data that comprises the end result was located in the same

location or put together from fragmented sources and then assembled

2. Reliability through distributed transactions. When DDBMSs distribute their data

across a network, then the single point-of-failure issue is eliminated. However,

there must be a means by which users can access all the data in the database trans-

parently, as mentioned above in (a). A transaction consists of multiple database

operations executed as a single atomic action. When a transaction is submitted to

the database, it is assumed that although there are concurrent transactions taking

place, the database will be able to return a correct result without violating database

consistency. A transaction used in any database context has the following proper-

41

www.manaraa.com

ties, known as ACID [Larson 120]:

Table 2-4. ACID

Atomicity Either all or none of the transaction's opera-
tions are performed

Consis-
tency

This follows if all the data in the database sat-
isfy a set of business rules both before and
after a transaction transforms the database

Isolated Concurrent transactions' operations are insu-
lated from one another

Durability When committed, results are persistent

In a distributed architecture, the problem is amplified due to the fact that multiple

DBMSs are involved. Therefore, a single logical database image exists that users

access in order to find whatever data is needed. Once the image is accessed, it is

up to the DDBMS to locate the applicable data for a given transaction and return a

result regardless of failures within the system or concurrency issues [Ozsu 15-16].

3. Improved performance. Performance increases are based on the notions that the

database can be fragmented or data can be replicated across multiple sites. In frag-

mentation, that data is split into pieces so frequently used data is located relatively

close to an application that uses it. Also, applications can be run in parallel either

accessing the same data that has been replicated close to the application or break-

ing up queries to access data located at multiple sites [Ozsu 17].

4. Easier system expansion. Systems can increase productivity by adding additional

computers that contain distributed data. Instead of replacing an entire database

system to handle additional needs, systems can just be added to the existing archi-

tecture.

42

www.manaraa.com

2.4.2. Distributed Object-Oriented DBMS (DOODBMS) Design

Designing a database around a DDBMS is much more complex than when design-

ing around a centralized database. Due to concurrency, transparency, and replication

issues, a designer must take into account how the system is to be laid out across multiple

sites to achieve maximum performance and concurrency. Add to this mix object represen-

tations consisting of relationships and inheritance that build hierarchies that can span across

multiple databases, and the problem simply increases in size.

There are a number of factors to consider when deciding to distribute an OODBMS.

In his thesis, Capt Hsin-feng (Edward) Wu identifies two major considerations mentioned

above with respect to performance that need to be taken into account when a DOODBMS

is being used; data fragmentation and replication [Wu 2-48 - 2-55]. James A. Larson also

identifies these considerations and gives three simple ways to approach the problems inher-

ent to splitting data amongst multiple databases. This thesis will concern itself with frag-

menting and replicating objects.

2.4.2.1. Fragmentation

Fragmentation involves partitioning a set of data into multiple fragments for

storage in different databases. Although Larson speaks from a relational point-of-view

with rows and columns as the main storage method, the same fragmentation concepts apply

to the object-oriented paradigm using objects and attributes (or fields in Java). There are

three methods by which to fragment data in a database; horizontally, vertically, and mixed

[Larson 83-87; Wu 2-48 - 2-51].

In horizontal fragmentation, the database table's rows are partitioned so that

independent sets of data are separated by rows. In essence, the fragmentation approach

would place rows into tables where they would most likely all be accessed together, thus

eliminating the need to query rows that are not to be included in any of an application's que-

ries.

43

www.manaraa.com

In vertical fragmentation, columns are separated into multiple tables so that

those applications that do not regularly need a number of columns' data will return a new

table containing only the data that is needed. For instance, if there are four columns in a

table and an application or set of users regularly only needs access to two of them, it may

make sense to partition the table into two tables with two columns apiece.

In mixed fragmentation, a table is partitioned using the horizontal and ver-

tical methods together.

2.4.2.2. Replication

Replicating data involves making multiple copies of a piece of data and dis-

tributing those copies to multiple databases. This may be done for two reasons; to provide

greater availability to the data and to reduce communication costs by allowing the data to

be located closer to an accessing application [Larson 134-135].

In an OODBMS, as was discussed earlier, replication can be done with log-

ical images of databases. An image allows a user to update one copy ofthat database and

have all the other copies update automatically.

2.4.3. Tigh tly-coupled vs Loosely-coupled DDBMS

There are two main types of distributed databases, tightly-coupled and loosely-cou-

pled. In the former, a database has a controlling entity, the DDBMS, that maintains busi-

ness rules for the entire multi-component database system. All requests must be forwarded

through the DBMS before proceeding onto those portions where the data is stored [Larson

11-13]. This type of database system also performs all the necessary optimizations, trans-

lations and data merging during a request.

By contrast, a loosely-coupled DDBMS allows users to directly access data in sev-

eral component DBMSs. Therefore, no global business rules are in place to protect the

entire system's component databases. Such rules must be established before a request

44

www.manaraa.com

reaches a component DBMS. The loosely-coupled system also allows for all the function-

ality of the tightly-coupled DBMS with the exception of global rules.

2.4.4. Federated DBMS

A federated DBMS (FDBMS) is a loosely-coupled DDBMS that allows for all the

functionality of a DDBMS, but users may access any component DBMS without using the

distributed features built-in to the overall system. This means that a program can access

data physically located on its own system without ever invoking inter-database communi-

cation mechanisms. Thus, data can be controlled and accessed locally, yet still participate

in the overall distributed database architecture when remote data is needed [Larson 45].

A federation is comprised of multiple databases that participate in the federation

over a network and a federation schema, which consists of export Schemas. The export

schema describes all of the data that users can access within the component DBMSs. A

federation schema describes all the data in the export Schemas of participating component

DBMSs. For example, an administrator may only grant a set of users with permissions to

select certain pieces of information from a component database; all other information is to

remain out of the users' reach. The administrator would build an export schema that

describes the data that the users may access. This export schema, along with others used

throughout the system, are actually part of one, large integrated schema that describes the

entire federation. This larger schema is, in fact, the federation schema [Larson 47].

2.4.5. DOODBMS Design

Modeling a DOODBMS is not much different than modeling any other existing 00

system. There still exist the notions of analysis, design, system development and integra-

tion. However, because many of the components are built to be distributed, there are addi-

tional considerations that need to be addressed. These include data dictionaries for system

definitions, services, collections, containers, and object placement within the system.

45

www.manaraa.com

Wu, mentioned in "Fragmentation" starting on page 43, established a set of guide-

lines for designing a DOODBMS. The basic definitions of the seven activities that he pro-

duced are presented here:

1. Object-Oriented Analysis (OOA). In Wu's first step, he starts with OOA to deter-

mine information concerning the database, application, and user access patterns.

For the most part, this step concerns itself with designing the objects to be used in

the system and the relationships and inheritance between objects just as in any 00

application development environment [Wu 3-4]. More specifically:

(a) Identify classes and objects

(b) Identify object and class structures

(c) Identify object attributes (fields)

(d) Identify the subject for each abstraction

(e) Identify services between objects

(f) Define data dictionary for classes, services and attributes

(g) Test the design

(h) Apply inheritance where appropriate

2. Perform high-level design. In this step, Wu transforms the OOA model into an

actual database design. This involves the following:

(a) Take the results from OOA and treat as a conceptual design.

46

www.manaraa.com

• Identify design trade-offs through system design

• Identify superclasses and subclasses

• Resolve many-to-many and one-to-many relationships with respect to

how they will be represented in the database

• Apply inheritance

• Refine generalization, specialization, aggregation, and association to bet-

ter model data

• Design problem domain, human interaction, task management, and data

management components

(b) Design global conceptual schema by combining OOA and OOD into the over-

all application database design

(c) Distribution design: partition objects according to responsibility and user view

and consider network partition

(d) Determine object placement considering responsibility and cost and perfor-

mance and consider trade-offs of placing objects into distributed global data-

base

(e) Design local conceptual Schemas by treating each object as a unit of distribu-

tion and perform low-level design of objects as described in next section

47

www.manaraa.com

3. Perform low-level design. The purpose of this step is to concentrate on imple-

menting the design given the language to be used [Wu 3-5].

(a) Determine object representation (class, data type, or static object)

(b) Refine inheritance structure

(c) Implement object methods with respect to design strategies

(d) Establish object visibility (private, protected, public) to establish communica-

tion between objects

(e) Identify polymorphic methods

(f) Apply OO design (OOD) using programming language to binded language

(g) Perform physical design and map the local Schemas to physical storage

devices.

4. Select OODBMS. In selecting the particular OODBMS to be used, Wu suggests

performing a survey of commercial OODBMS platforms and select one suitable to

the needs of the organization and application [Wu 3-34]. The following criteria are

used for evaluating an OODBMS:

(a) Power. Determine whether or not the database will support full distribution

and OO concepts. Next, measure performance and response of the system.

(b) Ease of use. In determining ease of use, consider user interface and learning

curve.

48

www.manaraa.com

(c) Robustness. Determine if platform is compatible between versions and if it is

reasonably "bug-free."

(d) Functionality. Consider whether or not the OODBMS fits the adopted meth-

odology, as well as, the specific functionality of OODBMS (i.e., language

interface, schema evolution, lock management, communications, concurrency,

etc.).

(e) Ease of insertion. Determine if the OODBMS is available for the organiza-

tion's chosen hardware platforms and whether or not the installation instruc-

tions are precise and clear.

(f) Quality of support. Determine the level of maintenance support and hotline

service provided.

(g) Others. Consider future development, cost, GUI standards, reputation, porta-

bility, etc.

5. Determine computer aided software engineering (CASE) tools. Wu's thesis also

deals with the selection of CASE tools to aid the designer in building the applica-

tions necessary to administer, maintain and build the OODBMS [Wu 3-36]. This

step is listed in Wu's thesis as part of step 4 above. However, it has been separated

here for clarity.

49

www.manaraa.com

6. Code using 00 language. Apply 00 methodologies and principles to map

classes, objects and structures to language of choice or code generators for genera-

tion of 00 database schema. Next, apply methods of structured programming

[Wu 3-37].

7. Observe and monitor the application. Build the applications and monitor its per-

formance. Refine as needed and improve stability given user input [Wu 3-37].

The above activities are merely a brief overview and much more guidance is given

in the respective thesis as to how to implement each and every step. The more detailed

breakdown will be presented in Chapter IV.

2.5 Objectivity/DB Overview

2.5.1. Architecture

Objectivity/DB is robust Federated OODBMS, which handles persistent objects in

a heterogeneous environment. Coupled with Java, C++, or Smalltalk, Objectivity/DB

allows seamless integration into the OOP language for use of objects regardless of which

language built the database or stored the data being accessed.

50

www.manaraa.com

Figure 2-8. Objectivity/DB OID Composition

64 Bit Object Identifier

To achieve the distribution across networks and allow for uniqueness among

objects that may have the same attributes, Objectivity/DB uses a 64-bit OID composed of

four 16-bit fields. Figure 2-8 shows the actual OID breakout [Objectivity/C++ 1-3].

As seen in the OID, there is a common hierarchy of storage classes that an object

must belong to [Objectivity/C++ 1-2].

• Basic Object. A fundamental unit of storage consisting of scalar types (char, int,

float), structures and class instances, strings, array types, associations, and object

references. Each object is contained within a container.

• Container - collection of basic objects. Objects within a container are physically

clustered together in pages on disk for efficiency Database locking occurs at the

container level, which is a very important consideration when designing where

database objects will be stored. Each container belongs to a database.

51

www.manaraa.com

• Database - collection of containers. Contains a default system container and user-

defined containers. Databases are stored as individual files on disk. Each database

belongs to a federated database.

• Federated Database. Logically contains databases and schema describing all pub-

licly visible class definitions. This is the highest level and where administrative

control is achieved.

Objectivity/DB also provides its own lock server (LS) and advanced multi-threaded

server (AMS) that perform functions vital to concurrency and distribution. Database access

by multiple users is achieved through locks administered by the LS. A single LS is used

for each federated database or autonomous partition. A database, container, or basic object

may be opened in either read or update mode. When an object is opened, the lock actually

exists at the container level. The lock server maintains the lock until the transaction is com-

mitted [Objectivity/C++ 11-2]. However, a concurrency mechanism known as Multiple

Readers, One Writer (MROW) is available that allows multiple process to read data even

when a container is being written to. MROW occurs at the transaction level, which means

that the reader receives the last good known version of the data (before the current updating

transaction that holds the lock), and significantly improves concurrency [Objectivity/C++

11-8].

AMS provides a method of distribution by allowing databases within a federation

to request data from any other database. Both the LS and AMS open a port on the server

for communication purposes.

2.5.2. Development

Developing an application using Objectivity/DB is not unlike developing a normal

C++ application. However, when using Objectivity/DB types within the program and com-

52

www.manaraa.com

piling the application with the database data definition language (DDL) file, objects

declared as persistent are created within the database and persistence is achieved upon exe-

cution of the main program. The steps below are used to develop the application [Objec-

tivity/C++ 1-6].

1. Schema Development

(a) Prepare DDL and identify classes to be made persistent. In essence, the DDL

file replaces the normal header file normally associated with C++ applica-

tions.

(b) Create federated database (if necessary) using oonewfd.

(c) Process DDL file using DDL processor. A header file is automatically pro-

duced containing normal class definitions and additional Objectivity/DB per-

sistent methods and attributes.

2. Application Development (C++)

(d) Produce application code based on schema. Include the DDL and header files

in application source code.

(e) Set up environment including the boot file. The boot file contains information

pertaining to the lock server and federated database disk location.

(f) Create or run Makefile which:

• Runs DDL processor

• Compiles application

53

www.manaraa.com

• Links with Objectivity/DB libraries and object files

(g) Build and run application.

(h) Use ootoolmgr to view database data. This tool allows the administrator or

creator to view and manipulate any data contained in federation, database,

container, or basic object.

3. Rational Rose Link. A tool called Rational Rose Link is available to automate the

creation of the DDL file and federated database for the C++ environment. Ratio-

nal Rose is a development environment using a graphical interface to create

classes, associations, attributes, and many other constructs used in the creation of

Java and C++ programs. Using the link, an object diagram can be created graphi-

cally and each class can be made either persistent or transient. Transient classes

are those that are destroyed after the program has terminated. Associations are

also maintained by the interface along with attributes and any needed methods,

including sets, gets, and constructors. After the object diagram is completed, the

DDL and federated database are automatically created for the user.

4. Application Development (Java)

With Java, the header files and DDL files are eliminated. The only stipulation is

that if a basic object is to be read, the class reading it must contain exactly the same

attributes. In creating the database, the class must extend the appropriate Objectivity/DB

persistence class.

54

www.manaraa.com

2.5.3. Transactions

Transactions are the method by which data is modified or inserted into a database.

When a program is first executed and database data is to be accessed, the program declares

a transaction. After a transaction is started, the database can be used. Any methods dealing

with the database must be started and ended within a database transaction or the data cre-

ated or manipulated will not be available for others to access. A transaction will continue

until it is either aborted or committed using the abort, commit, or commitAndHold func-

tions [Objectivity/C++ 2-7].

Since a transaction is not committed until commit or commitAndHold are explicitly

called, journal files may be used when the transaction aborts, either explicitly or by default

if an error occurs. Journal files are maintained along with the other federated database files,

which contain information concerning recent uncommitted transactions. The database per-

forms a roll back of the data and returns the database to a consistent state as it was before

the transaction took place. Roll back can occur when an application, client host, or lock

server fails. A manual method to recovering the database also exists if the database host

becomes permanently unavailable after a failure [Objectivity/Admin 113-114].

Concurrent transaction support is also supported. This enables a user to run multi-

ple, concurrent transactions over the same federated database from within the same process.

Each transaction is started using its own non-preemptive thread, which means they will not

be switched unless the user explicitly switches between them. The only drawback seems

to be that you cannot use the Objectivity/DB threading support is conjunction with a

threaded package that uses preemptive scheduling. This is due to the fact that each Objec-

tivity/DB thread contains session/transaction information including, among other things,

its own copy of the buffer cache and error handlers [Objectivity/C++ 2-18].

55

www.manaraa.com

2.5.4. Security

Security of the database is handled using the operating system's file system. Per-

missions are set on the federated database, autonomous partition, database, journal, and

boot files so as to let those that need access the ability to open and close the database for

routine usage. The LS and AMS components must be run from an account that has access

to any files related to the databases that the two components control [Objectivity/Admin

29].

2.5.5. Distribution

Distribution is achieved through another layer of data abstraction known as an

autonomous partition. Partitions are completely self-supporting and can contain and

manage multiple databases and containers. Self-supporting means that the database has its

own boot file, lock server, and system database file, which contains schema information

and the global catalog of partitions along with their locations and a listing of all the data-

bases they contain [Objectivity/Java 274]. Using the autonomous partitions, Objectivity/

DB provides a Fault Tolerance Option (FTO) and Data Replication Option (DRO). In dis-

tributing the data using these two mechanisms, two goals are achieved.

1. Fault tolerance. With FTO, multiple users are able to access data regardless of

failures outside of the partition. This is because the partition maintains its own

lock server and database schema, which are normally only located at the federated

database level [Objectivity/FTP-DRO 16]. Put simply, if the rest of the federation

is unavailable, work may still continue in the working partition.

2. Data availability and performance. Data replication through Objectivity/DB DRO

extends the FTO and allows a database to be replicated across multiple partitions

on the network using database images. Images of a database are created and dis-

56

www.manaraa.com

tributed to multiple partitions and when a quorum, or a majority, exists amongst all

the images, and then data is written out to those images [Objectivity/FTO-DRO

23]. However, data can be read from any image regardless of whether or not a

quorum exists. This arrangement allows quick access to data, but keeps the maxi-

mum number of available images updated. This feature can be considered the

backbone of Objectivity's distributed architecture. The DRO alleviates the single

point of failure problem that exists in a centrally located database architecture by

allowing data to be manipulated in another partition if the partition that the data

was originally intended for is unavailable. When the previously unavailable parti-

tion comes back online, its images are resynchronized with all the others in the

federation.

2.5.6. Schema Evolution

This component, also one of the great features of Objectivity/DB, allows a database

schema to automatically adjust to any changes in persistent class structure [Objectivity/

Java 32]. For example, if an attribute's name is changed, the schema manager will detect

the changes upon program execution and will automatically begin converting objects as

they are accessed to the new class definition. In a relational database, the change would

mean changing a column name and then locating and changing that name within the appli-

cation. In Objectivity/DB, the process is reversed. The program containing persistent

classes can change first and allow the change to filter through the database either implicitly

or explicitly.

57

www.manaraa.com

III. Methodology

3.1 Introduction

The purpose of this chapter is to describe the analysis, design, and implementation

of a high-speed multiple-IDS data repository using a distributed object-oriented database

management system (DOODBMS). The process begins by outlining the design process of

building a DOODBMS, and incorporates a method for translating a relational database

schema into an object-oriented database schema.

3.2 DOODBMS Design

The methodology for deploying the DOODBMS is nearly identical to that of Capt

Hsin-feng Wu's thesis [Wu 3-1 - 3-2]. In it, Wu gives seven activities necessary for DOO-

DBMS application design. These seven activities are presented in Chapter II under "DOO-

DBMS Design" starting on page 45. Since Wu's design concepts primarily involve

implementing a totally new design without any existing databases, all seven steps are used

with a few modifications. Most of the modifications involve re-engineering an existing

relational database to an object-oriented database. The method of database transformation

is derived from Linhares Lima's thesis as given in Chapter II under "RDBMS to OODBMS

Schema Transformation" starting on page 38 [Lima 21 - 26].

Below is an outline of Wu's steps integrated with Linhares Lima's re-engineering

technique. Other exceptions and/or modifications to Wu's development technique are as

noted:

1. Object-Oriented Analysis (OOA). In Wu's first step, he starts with OOA to deter-

mine information concerning the database, application, and user access patterns.

This step also includes designing the objects to be used in the system and estab-

58

www.manaraa.com

lishing relationships and inheritance between objects [Wu 3-4].

Since a system and database already exist, this first step is modified to involve

mapping out the existing system and determining dataflow and components.

Therefore, there are two routes to take when approaching the initial phase of

design. The first is to design from the ground up and begin the OOA just as

described in Wu's thesis. The other is to begin the OOA with an existing database

schema and re-engineer it to accommodate the DOODBMS.

2. Perform high-level design. In this step, the DOODBMS is designed using the

object model resulting from the re-engineered relational database. The high-level

design process includes overall system design, re-evaluation of the object model

for inheritance, aggregations, and relationships, distribution design, global and

local schema design, and object placement within the database. Partitioning, frag-

mentation and replication are also addressed in this step, which play an important

role in determining how the DOODBMS is to be designed.

To complete the high-level design process, Objectivity/DB databases and contain-

ers are used along with Objectivity/DB's fault tolerance option (FTO) and database

replication option (DRO). The object model resulting from the re-engineering pro-

cess is mapped to the Objectivity/DB specific design structures to produce the

overall DOODBMS design.

59

www.manaraa.com

3. Perform low-level design. When the high-level design is completed, a low-level

design process is applied that takes the DOODBMS design and implements it

using the 00 programming language of choice. Although this step precedes the

OODBMS selection process in the next step, many 00 factors may be determined

to include object visibility, polymorphic methods and object methods.

4. Select OODBMS. Wu next advises choosing a DOODBMS based on criteria sum-

marized in "Select OODBMS" on page 48. Objectivity/DB was selected because

it meets each criterion set forth by Wu given the results of the SLAC initiative and

the database implementation documentation provided by Objectivity, Inc.

5. Determine computer aided software engineering (CASE) tools. As described in

Chapter II, Wu's thesis also examines the use of CASE tools in developing the

database and its components. Objectivity, Inc. provides the Rational Rose Link,

which aids in the design, implementation and testing of databases using the Objec-

tivity/DB. Rational Rose is a CASE tool with graphic design features capable of

handling CASE tool requirements defined in Wu's thesis.

6. Code using OO language. Once the DOODBMS platform has been chosen, cod-

ing can begin using the object model and 00 programming language of choice.

Java is used in Chapter IV to program the object model.

7. Observe and monitor the application. This, as described earlier, involves testing

the application and its components, and making adjustments based on feedback

from such tests. If the DOODBMS is being built from an existing RDBMS, test-

ing the new design will need to include a comparison test against the current

60

www.manaraa.com

RDBMS to measure any gains or losses in performance. One of the main focuses

of this thesis is to provide information on performance gains or losses resulting

from such a transformation. There are also two other factors that should be consid-

ered in future testing: network I/O and CPU load [Ozsu 228].

I/O is important because there may be many taps communicating with the data-

base. In the cases of ISS' Real Secure and Network Flight Recorder, machines that

collect network intrusion information rely on a set of distributed sensors to collect

information and send it back to a main console where the information is stored in a

database or log [RealSecure; NFR]. The taps, sensors, and console applications

communicating with their respective sensors are relying on bandwidth that may

already be heavily utilized by everyday, unrelated traffic. Additionally, analysts'

applications need to access information across multiple networks in an attempt to

gather all the necessary information to determine threat.

CPU load becomes a factor in that the taps are used on machines already deployed

on a network to gather sensor and intrusion related information. The deployed tap

should take up as little CPU and memory resources as possible on the machine on

which it is running so that normal operations are not interrupted. This becomes a

major concern in transforming a system with a centralized RDBMS because func-

tionality is being pushed down from the RDBMS triggers and server-side applica-

tions into taps that communicate with a DOODBMS.

61

www.manaraa.com

(a) RDBMS vs DOODBMSperformance. If a transformation is made from an

RDBMS to a DOODBMS, then it may be necessary to quantify any perfor-

mance increase or decrease seen as a result of the switch. A variety of queries

are made on each database and the times to return results noted. Below is a

testing technique used by Tomaz Domajnko et al to measure several different

methods of implementing a persistent datastore [Domajnko]:

• Simple object insertion. The first test is to insert a large group of simple

objects into both database systems and measure the time taken by both.

The objects, characterized as simple because they are not connected to any

other object, are merely instantiated to create a database entry. Therefore,

no additional overhead is realized as a result of placing the object into the

database.

• Complex object insertion. A series of complex objects are placed in each

database. Complex is defined as a series of simple objects with relation-

ships made between them. Thus, not only is the overhead of instantiation

measured, but also the overhead of connecting the objects into an object

graph.

• Object queries. Objects are pulled from a relatively large database (e.g.,

Domajnko et al used a database filled with 45,000 objects) through a series

of navigation paths. The query results are characterized by how many

other objects were navigated to retrieve the desired objects and how long it

took for each query to complete. The reason for this lies in the fact that a

62

www.manaraa.com

relational database may do better on small queries involving only a couple

of tables. However, as the navigation path grows larger, the time to retrieve

an object is expected to increase substantially faster for the RDBMS than

for the OODBMS. This is due to the fact the table joins are very costly in

an RDBMS.

(b) I/O. The load that the DOODBMS implementation puts on a network is mon-

itored and the application adjusted if it is found that the network is being over-

whelmed by either the taps' or analysts' applications. There are a number of

factors that should be taken into account when conducting measurements:

• Additional taps will only increase traffic. Therefore, measurements are

made so that an estimate is made as to the expected increase in traffic given

a number of taps.

• GUI applications' network load varies according to query. In a query, some

DOODBMSs return pages or blocks instead of individual objects. These

pages and blocks normally cluster objects together that have some logical

connection. The clustering method may be defined by an administrator

when the database is built or by the database itself based on relationships

among data. This means that if queries by an analyst's application are

made during testing that only involve like-items, then pages of those like-

items will most likely be returned and cached which will mean fewer que-

ries for objects. Therefore, it is recommended that a variety of queries be

made to test the network load that an application will put on a network.

63

www.manaraa.com

These should include queries for like-objects that are clustered together in

the database and queries for completely unrelated and non-clustered

objects.

(c) CPU load. CPU load is monitored while the tap is running on the sensor plat-

form. The load is measured both under controlled test conditions and during

periods of peak usage when the sensor is monitoring or gathering a large

amount of traffic.

CPU load and I/O will not be measured in any formal sense, but will be noted as

informal observations during the testing process. These two measurements are not per-

formed because they do not pertain directly to the objective in this thesis, which is to mea-

sure increases in performance in terms of database insertions. Chapter V contains testing

results and analysis.

3.3 Database Integration into IDS Application

In 3.2, only the database itself is discussed. However, when the RDBMS is replaced

with the DOODBMS, a number of key components need to be designed or redesigned to

gain the full benefits of the DOODBMS. At the same time, strict coding procedures are put

into effect to delegate how a program should be written to logically separate the GUI, data-

base, and application code. In OO programming, the breakdown between portions of code

is directly related to the three-tiered architecture that defines the breakdown of components

related to remote database connectivity [Farley 194]. The components described below

apply to the DOODBMS-based IDS data repository regardless of whether or not it was pre-

viously designed around a relational database.

64

www.manaraa.com

3.3.1. Components

1. Taps/Bridges. Bridges disappear from the IDS model. Bridges mainly act as a

conversion mechanism for inserting information into the database. Since the

DOODBMS eliminates the conversion of information produced by a tap to

SQL, the database insertion functionality is pushed down to the taps, which

reside on machines running or managing the sensors.

A tap gains a majority of its bridge's functionality. Since the DOODBMS nor-

mally contains its own connection mechanism and distribution method, all

occurrences where the tap used its own language or system-specific database

connectivity method are eliminated. Such connection methods include Java

database connectivity (JDBC), the standard by which Java connects to an

RDBMS to manipulate data, and/or the network file system (NFS), the connec-

tion mechanism used to connect UNIX platforms over networks. All that is

needed once the DOODBMS is installed is a tap application that performs the

following:

• Creates a connection to the distributed database via the DOODBMS connec-

tion mechanism

• Pulls data from the sensor's log file, database, or a system port

• Creates the object, declaring it as persistent and inserts it into the database by

clustering it into a container, or via methods used by the DOODBMS

65

www.manaraa.com

2. Graphical User Interface (GUI). Existing GUI components in an analyst's

application are also redesigned around the DOODBMS, or new ones are devel-

oped. The level of change depends upon how much database code was inte-

grated into the GUI. If the code was already logically separated by

functionality, then the change will be minimal. If the GUI components gather

information themselves for display rather than using an interface provided by

the application, then the changes will be far more substantial.

3. Communications. There must exist a means to communicate between the data-

base and its taps and analysts' applications. With a DOODBMS, there may

exist a number of components that need to be managed in order for the database

to provide concurrency. The communications components needed vary by data-

base vendor. Objectivity/DB requires both a lock server (LS) and connection

server (AMS), both of which are described in Chapter II under "Architecture"

starting on page 50.

4. Administrative console. It is highly recommended that an administrative appli-

cation be built that allows for the manipulation of the DOODBMS. Unlike Ora-

cle, a centralized management console may not be provided by the DOODBMS

vendor. The application should be able to create and delete component data-

bases, build objects that are used and considered common to all the component

databases, and modify the existing database distribution scheme's partitions and

images.

66

www.manaraa.com

3.4 Summary

This chapter outlined the procedures necessary for implementing a high-speed IDS

data repository designed around a DOODBMS. Borrowing heavily from previous theses

involving DOODBMSs and RDBMS to OODBMS schema transformation, I described a

number of issues discussed involving the design of the system and how it is to be imple-

mented. These include system design, component design, and testing.

Designing the DOODBMS schema is not much different than designing any other

00 system. However, the distributed nature of the system is key. Fragmentation and

redundancy of information throughout the domain, discussed in Wu's thesis as "partition-

ing" and "global schema placement" of objects under high-level design, is crucial to the

database's success and will be visited in the next chapter.

67

www.manaraa.com

IV. Database/System Implementation

4.1 Introduction

The purpose of this chapter is to describe an IDS data repository around a DOO-

DBMS. AIDE is used to exercise the methodology of transforming an already existing

system designed around an RDBMS into one that utilizes the functionality of a DOO-

DBMS. The resulting system is named OOAIDE, for Object-Oriented AIDE.

4.2 Analyze IDS Structure

AIDE details are discussed in Chapter II starting on page 16. The following is a

brief synopsis of the primary system components and their functions within the system.

• Taps/Bridges. These small programs gather information from a sensor located on

a host machine and insert it into the AIDE database.

• Database. The RDBMS, Oracle, is used to store and maintain the information sent

to AIDE from various sensors. Triggers are used within Oracle to perform various

functions, such as correlating a sensor signature with that of an AIDE signature

and mapping data to the appropriate tables.

• GUI. The current AIDE interface, written in Java, is used by analysts to display

and manipulate information stored in AIDE. JDBC is used for communication

between the application and database.

68

www.manaraa.com

Correlator. The correlator, also written in Java, runs on the Oracle database server

and correlates events together based on AIDE signatures and the time of the event.

It is set to query the database for new events at a predetermined time interval, nor-

mally one minute.

In the 00 scheme, these components change in structure and code based on the

change in the database. Figure 4-1 shows the system resulting from the use of Objectivity/

DB.

Figure 4-1. OO-AIDE Process Diagram

/ *\

Functionality that existed in bridge is placed in Tap.
• Connection is made directly to database
• Object relationships are created in Tap vice triggers

Analyst Workstation

r> K

1—1

/ i-\

The most significant change from the diagram presented in Figure 2-2 is where

functionality is placed to insert information into the database. In the relational approach, a

tap communicated with a bridge to insert data. Triggers then processed the data to establish

keys and relationships between tables where the data was finally placed. The taps that com-

69

www.manaraa.com

municate with the DOODBMS do not use bridges, but instead send data directly to the

DOODBMS for insertion. Also, relationships are created within the tap and not in the data-

base. This means that each tap takes up a small portion of the overall processing load that

once rested on the database server, which allows the database server to service a larger

number of taps.

4.3 Re-engineering the RDBMS Schema to a DOODBMS Schema.

The data dictionary is presented in Appendix A and the database itself is described

in Section 2.1.3.2. Linhares Lima's proposed steps for converting a relational database to

an 00 database are applied to AIDE in the remainder of this section.

Figure 4-2. AIDE ER Diagram

EVENT HIST |H SITE
■^a&flssfttsßwft

70

www.manaraa.com

4.3.1. ER Model of AIDE

Figure 4-2 presents the ER diagram of the AIDE database. Only entities are shown

for simplicity. This model is a direct representation of the functional IDS portion of the

AIDE database. Some tables have been left out because they are not yet fully implemented

into the existing system or are not within the scope of the research presented in this thesis.

No functionality has been lost due to these exceptions.

4.3.2. AIDE Initial Object Model

In this step, each entity in the ER diagram is converted to a tentative class. No mod-

ifications are made to the class structure. Figure 4-3 shows the results of the translation.

4.3.3. Refine Classes

At this point, the tentative classes are refined to show a more correct representation

of the object model versus that of the relational model. For simplicity, a number of Lima's

steps are combined to form the overall refined diagram. Specifically, the tentative classes

and discovered generalizations and associations within the original diagram have been

refined. The result is seen in Figure 4-4.

(a) Combine classes that have same schema. EVENT_HIST was combined with

EVENT and EVENT_HIST_LOG was combined with EVENT_LOG.

(b) Discover generalizations. BOUNDARY and EVENT were found to have sim-

ilar functionality and attributes. As a result, the superclass ACTIVITY was

created that generalized BOUNDARY and EVENT, but maintained any dif-

ferences between them.

71

www.manaraa.com

Figure 4-3. AIDE Entity-to-Class Translation

< z

w

MA

UJ >

w

O
a.

Zl
ir
in
to

<
z
o

Zl
w

£ 18
Vt
Vt c ■o

c
o

^fr-
ig

»3
o

1-
in n Ü

o
z

o ^*- ff >
<J — rq HI

72

www.manaraa.com

(c) Eliminate classes (previously tables) that consist entirely of foreign keys to

indicate a one-to-one, one-to-many, or many-to-many association (join table).

As a result, many-to-many associations are produced between the classes for

which the join table was being used. EVENT_CATEGORY,

SIGNATURE_CATEGORY, and INCIDENT_EVENT were eliminated.

(d) Eliminate or combine tables that were used for enumeration or constraints.

These tables should not normally be represented as classes. The attributes

from the tables that held those values may be rolled in with an associated class

that actually used those values. SENSOR_VERSION and SENSOR_TYPE

were rolled into SUPPORTED SENSORS.

USERLIST

Figure 4-4. Refined Class Diagram

SERVICE

ROLLED UP EVENT

EVENT 4-

BOUNDARY

EVENT LOG
1..n

0..n

0..n

CORR CATEGORY

^X
-p'

0..n

0..n

0..n

AIDE SIGNATURE

73

www.manaraa.com

(e) Discover associations. In some cases, associations are the result of eliminating

classes as in part (d) above. However, in the original AIDE database, tables

contained references to rows in other tables by inserting a unique value. In an

object diagram, each reference is converted into a uni-directional association.

These associations can be seen under the Activity class in Figure 4-4.

4.3.4. Prepare a Functional Model

In preparing the functional model, database usage was analyzed against the rele-

vance of the classes that remained in the class diagram. A number of the classes, although

allowed to remain in the beginning of the translation process, needed to be eliminated due

to the manner in which they were used or the functions that they performed. The following

no longer exist in the object database:

• EVENT_LOG. This class' only purpose is to maintain a log of events and infor-

mation such as IDs of messages sent to analysts regarding the event, and the parti-

tion that the event was kept in within Oracle. This functionality can be integrated

elsewhere within the object model and maintained by the database itself, such as

within a specialized container. The elimination of this class is done primarily

because the trigger that existed to produce messages and maintain partitions will

be eliminated, as will all the other triggers used by the relational database.

• ROLLED_UP_EVENT. This class served as a performance enhancement to

AIDE. It contained information on each event that is put into the database. The

information includes time of insertion, time of last update, AIDE signature, IP

addresses of both the event's source and destination, and total times an event with

74

www.manaraa.com

exactly the same information has been seen. Updating the table for each new event

slows the insertion of new events down to a noticeable degree, but queries that

involve only the information that this table tracks are much more efficient.

Thus, the resulting diagram is shown in Figure 4-5. The class diagram presented

establishes a good baseline and is final with respect to the translation process.

Figure 4-5. Final Class Diagram

USERLIST

DA_l£i
SITE

1..n '

1..n
3..n

HOST

HOST SERVICE

SERVICE

EVENT

0..n\

BOUNDARY

Q.Ai
CORR CATEGORY

0..n

0..n

AIDE SIGNATURE

4.4 High-Level Design

This section deals with designing the database using the class diagram developed in

the previous section.

75

www.manaraa.com

4.4.1. System Design Trade-offs

Trade-offs defined in Wu's thesis include, among others, performance, memory

space, portability, cost, maintainability, and understandability [Wu 3-16]. The following

priority has been given to factors important to the design of the IDS data repository:

1. Performance. As mentioned in Chapter I, performance is of major concern to the

end users of AIDE. Also to be taken into account is the overhead associated with

insertion of data and queries made on the database.

2. Maintainability. This factor will become increasingly important as the database

becomes distributed throughout many sites.

3. Space. As the database grows, disk space will be of concern in storing replicated

events and site-specific information.

4. Other. Portability, cost, understandability, and other factors are also to be consid-

ered when the database is being laid out, but do not take precedence over one

another at this time. It may be necessary in the future, once an initial design is in

place and testing has been achieved, to go back and redesign the database based on

the test outcomes and factor in these other considerations as well.

4.4.2. Resolve to-Many Relationships with Respect to Database Representation

Objectivity for C++ and Java contain their own methods to implement many-to-

many and one-to-many relationships between classes. The representation of the relation-

ships within the database, however, is language-independent. As a result, interoperability

may be achieved between the different languages used to access and modify relationships

76

www.manaraa.com

in the database. No modifications need to be made to the translated class diagram to resolve

any relationships with respect to Objectivity/DB.

4.4.3. Refine Classes and Associations to Better Model Data

Although the database has been translated from a relational model to an object

model, it still does not represent an optimized object model to be used as the basis for a

DOODBMS. Navigation between the objects is not optimized with regards to perfor-

mance, which is the primary concern in the new OOAIDE system.

The majority of the class diagram uses uni-directional associations to demonstrate

navigation from one class to the next. When considering performance, how the database is

to be used may be an indicator as to whether or not a bi-directional association should be

used to allow both classes to navigate between themselves. However, it should be used

only where needed due to space considerations. A bi-directional association may take up

more than twice as much space within the database as a uni-directional association if a

many-to-many relationship is needed and if the two classes (or objects) are being kept in

separate component databases or containers. This is because OIDs must be stored in both

objects and if they are stored within different storage hierarchies, additional data is needed

for locating each object. Listed below are some classes where a bi-directional association

is required:

SITE to HOST

HOST to SENSOR

HOST_SERVICE to HOST

SITE to ACTIVITY

SENSOR_SIGNATURE to SUPPORTED_SENSORS

SITE to USERLIST

77

www.manaraa.com

These classes need access to their parent's and subordinate's information quite fre-

quently. Therefore, a bi-directional association is warranted. There is a problem in provid-

ing the Site to Activity bi-directional relationship due to the fact that there are many events

being inserted into the database at any one time. For every event being inserted, an object

of type Site would need to be updated with the appropriate Activity OID. This performance

concern is addressed in section 4.4.6.1.

4.4.4. Design Global Conceptual Schema

The global schema combines the translated database and any changes made up to

this point. Therefore, the resulting model takes into account any additional relationships or

modifications, as well as their impact on performance, space, and maintainability, but does

not yet introduce all the concepts of the distributed design.

Figure 4-6. Global Schema

USERLIST

3-A 4±
SITE

1..n
1..n

D..n

HOST

HOST SERVICE

SERVICE

EVENT

0..n\

BOUNDARY

Q..1#:

CORR CATEGORY

0..n

0..n

AIDE SIGNATURE

78

www.manaraa.com

4.4.5. Distribution Design and Local Schema Design

Probably the most formidable challenge is distributing the database, which includes

distribution of objects and object placement onto hard media. The main goals of distribut-

ing the AIDE database are to distribute common data so it is kept closer to each site and

eliminate the single point-of-failure that exists in the current system. To put it simply, all

the needed data should be available to an analyst even if a site, the initial point of collection

of data for a sensor located on a given host, goes down. Two different approaches may be

taken.

4.4.5.1. Partial Redundancy of Objects

Partial redundancy refers to dividing the objects into two categories: redun-

dant objects and non-redundant objects. Wu identified multiple data placement methods

by which data may be distributed across a domain [Wu 3-26]. Specifically, there are seven

methods by which to distribute objects, ranging from full replication of objects, to placing

most of the objects at the most local level to decrease communication. In looking at the

needs of the IDS, the following guidelines may be followed to distribute objects:

1. Place objects that will get queried the most often and are the most common to

each site in the distributed domain using redundancy. This technique is

known as placement by greatest query rate [Wu 3-27].

2. Place critical objects at the local sites, but still available to other sites so they

may be moved around the domain, or in this case, the federated database.

Here, objects are placed near or on the system that is responsible for them,

which is known as placement by system responsibility [Wu 3-26].

79

www.manaraa.com

Using the above techniques and reasons, the objects are placed in two dis-

tinct categories: redundant and non-redundant objects.

1. Redundant Distributed Objects (or classes). These objects are redundant, as

stated above, so that they may be updated easily across the federation and so

that they may be located quickly by each site to reduce network communica-

tion.

To achieve redundancy under Objectivity/DB, an image is located within an

autonomous partition in each database that is to contain replicated data using

the Data Replication Option (DRO) and Fault Tolerant Option (FTO). The

following types of objects are deemed redundant:

(a) SITE. Site objects are needed by every analyst workstation in order for

those analysts to traverse events located at each site. Therefore, the

objects are stored at each site.

(b) SUPPORTED_SENSOR. A listing of supported sensors is available at

each site for the system and analysts.

(c) SENSOR_SIGNATURE. A listing of signatures for each sensor type is

available at each site for each system and analyst.

(d) AIDE_SIGNATURE. A listing of AIDE specific signatures is available at

each site for each system and analyst.

(e) CORR_CATEGORY. A listing of correlation categories for the AIDE sig-

natures is available at each site for each system and analyst.

80

www.manaraa.com

(f) SERVICE. A listing of common services that a host may use, such as FTP

and HTTP information, is available at each site for each system and ana-

lyst.

(g) USERLIST. A listing of all the users in the system and what sites they are

able to access is also made available to each site.

2. Non-Redundant Local Objects (or classes). The following objects are specific

only to the site upon which they were instantiated and stored.

Fault tolerance is achieved through the FTO in Objectivity/DB. This option

used alone, without DRO, allows data to be placed in the federation and made

available even if the rest of the federation goes down, but not replicated

throughout. The following types of objects are made local:

(a) HOST

(b) HOST_SERVICE

(c) SENSOR

(d) ACTIVITY. Includes BOUNDARY and EVENT through inheritance.

(e) INCIDENT

4.4.5.2. Full Replication of Objects

The above method enhances performance in the context of insertion of data,

since a quorum of images does not need to exist to write out to a redundant distributed data-

base, but fails to address single points-of-failure for the most critical data: events. A dis-

81

www.manaraa.com

tributed architecture is needed that allows the taps to write out events to a main database

image, allow those events to be replicated so that if a site goes down the data can still be

accessed elsewhere, and still allow common site and sensor data to be co-located and

manipulated so as to not interfere with events.

A denial-of-service (DOS) attack on a network is one example. If a site

machine residing on the network becomes a target of the attack, or if it becomes overly sat-

urated with input from its subordinate taps, the data that resides on the machine could

become unavailable. Data includes any events recorded from a host's taps regardless of

whether or not they occurred during or before the DOS. As a result, the analyst may not be

able to build a complete picture of what happened with the site at any given time that the

host has been collecting data and sending it to a site.

The events themselves can be made redundant so that they are stored

throughout the federation at every site containing an image of the database. The drawback

is that redundancy does take up a great deal more disk space and more processing capability

at each site. This balance of availability, performance, and storage capacity will have to be

weighed by an administrator in determining how to partition the database. A possible solu-

tion is presented in the next section.

4.4.6. Implementing Using Objectivity/DB

As explained in "Distribution" starting on page 56, autonomous partitions and

images are used to separate distributed data from localized data. At this point, all of the

classes in the previous section are located in partitions for reliability (fault tolerance) rea-

sons. However, partitions must also contain images of databases to be made redundant.

Objectivity stipulates that an autonomous partition can control only one image for a redun-

dant database, but may contain many number of database images. A partition may also

contain multiple databases that are not redundant.

82

www.manaraa.com

This thesis presents an implementation consisting of full redundancy for the sake of

reliability and availability of data to analysts. These two factors are important consider-

ations in deciding whether or not to maintain copies of data at every site [Blaha 411].

Although this can create problems concerning performance, the problems can be divided

so as to distribute any negative effects on the system.

4.4.6.1. Delegate Data Distribution Using Unweighted Quorum

A quorum exists when a majority of the copies of a replicated database are

available for writing. A quorum does not need to exist to read from the database, although

such reads may result in reading stale data. The quorum is based on adding the values of

the weights of the different images and deciding if the resulting value is a majority of all

the weights combined. Thus, it is possible to assign weights to images so that a write will

occur even if only one or a few of the images are available. Weights may be changed at

any time to reflect changes in the distributed architecture. Figure 4-7 shows an example of

a quorum and a non-quorum based on images with unevenly distributed weights.

Figure 4-7. Quorum and Non-Quorum with Unevenly Distributed Weights

Quorum Connection

No Connection

l

M. •< 1.1 • u* ^ # total weights #_available_waghts > — r—**—

No Quo nun

(Q

M. -1 1.1 • 1.. ^ # total weights #_avaüable_wetghts < ~—**—

83

www.manaraa.com

It is possible for the number of available weights to equal the number of unavailable

weights. In such a case, a tie-breaker partition with a weight of one is used to produce a

quorum. The tie-breaker partition contains no databases and is called only when a tie is to

be broken between the number of available and unavailable weights.

The classes are split up once more. In this iteration, the concentration is not

on the redundancy issue, since it was decided that all objects will be made redundant.

Instead, what is needed at this point is a way to delegate where the objects are to be placed,

and more specifically, what databases they will be placed in.

• SITE Database. This database contains all of the objects of the type of classes

listed in the previous section under Redundant Distributed Objects.

• ACTIVITY Databases. These databases contain all the activities, including the

objects of type EVENT, BOUNDARY and INCIDENT for each site. Addition-

ally, they contain objects of the type of classes specific to the site on which the

database in placed to include HOST, HOST_SERVICE and SENSOR.

The reason for splitting the objects up in such a manner is primarily a matter

of performance and availability. Since Objectivity will be updating the event objects quite

frequently, it is desirable to place those objects away from the objects that are updated less

frequently to avoid concurrency issues involving the locking of a container or database.

Thus, the two databases are used as logical separators between object types.

Next, these databases are placed such that availability and fault tolerance are

at a maximum. For this, multiple autonomous partitions (AP) are used to maintain the dif-

ferent databases according to redundancy needs. The SITE database and its images are

placed in one AP at each site and the ACTIVITY database and its images are placed in

another AP. Figure 4-8 below shows a graphical representation:

84

www.manaraa.com

Figure 4-8. OOAIDE Databases and Partitions

SITE1

AP SITE 1

SITE 2

AP SITE 2

SITE 3

AP SITE 3

HOST1

HOST:

HOST 3

HOST 4

HOST?

HOST 6

For the SITE database, the weight is set to one (1) wherever an image is

placed. A SITE, HOST, SENSOR, or any other object of the type that is contained within

the SITE and database cannot be added unless a quorum of the images are available. This

ensures that every site contains a proper image of sites used throughout the system.

However, the ACTIVITY databases are quite different. The weights are set

such that data will be written so long as the site which controls the database is available.

The data is still replicated throughout the OOAIDE system, but priority is given to a host's

site so that in the situation where a majority of sites are not available for writing, data can

still be entered at the local site. A simple calculation can be used to calculate the weight

distribution:

weight of image at controlling site = # of database images of the database

weight of image at any other site = 1

85

www.manaraa.com

Figure 4-7 and Figure 4-8 both use the calculation to assign weights to the different

images. In Figure 4-8, if ACTIVITY_1 is unavailable, then neither HOST_l nor HOST_2

can write to the ACTIVITY_1 database. However, any other site can still read from their

image of ACTIVITY_1, but writes are not allowed. If the opposite is true and all the remote

images of ACTrVITY_l are unavailable, but SITE_1 's image of the database is available,

then any site or host can read and write to the ACTrVITY_l database that is located at

SITE_1.

Even with the federated database split up into multiple databases, there still exists

a problem with all of the sensors inputting information into a single database. At this point,

there needs to be an even further breakdown in the storage hierarchy. This is where con-

tainers are used. Objectivity/DB provides the following guidance to ensure concurrency

[Objectivity/Java 99]:

• Assign all components of a composite object to the same container if the entire

composite object will be accessed as a unit.

• If a composite object is large and complex and can be divided logically into sub-

systems that may be modified independently, store the objects that make up each

subsystem in a separate container.

• If a large number of objects are read frequently but rarely updated, you can safely

assign them all to the same container.

• Distribute objects that require frequent update among as many containers as rea-

sonably possible.

• Keep shared resources in separate containers from objects that use those resources.

86

www.manaraa.com

• Use multiple readers, one writer (MROW) sessions to help manage applications

that require containers to be locked for long periods of time.

As mentioned under "Architecture" starting on page 50, locking of objects

occurs at the container level. With many events expected from multiple sensors located

throughout the network, each sensor writes to its own Event container. This allows each

sensor a nearly uninterrupted flow of information. It is understood that GUIs and other

analysis tools will need to connect and query information from the Event container, but

with MROW it can be done without interrupting the sensor's input. Figure 4-9 shows a

detailed diagram of the container breakdown.

Figure 4-9. OOAIDE Database Containers

Event Container
(1 per sensor)

Boundary Container

Incident Container

Host Container

HOST
HOST_SERVICE
SENSOR

SITE
USERLIST
SERVICE

Sensor Container

SUPPORTED_SENSORS
SENSOR_SIGNATURE
AIDE_SIGNATURE

- CORR CATEGORY

The Boundary container is another potential bottleneck within the system.

The input to the boundary container from routers and firewalls that produce information

pertaining to those addresses that the system has rejected from entering the network without

the IDS even seeing the traffic may be more that the input into the event container from the

87

www.manaraa.com

taps. These systems are also allocated their own containers due to the high volume of

entries.

4.4.6.2. Limitations of Design

The distributed design presented above has some limitations.

1. SITE updates. For SITE images to be updated, they must participate in a quorum

at a given point in time. This means that the process updating the SITE database

must be able to physically communicate with a majority of the sites to establish a

quorum to get some of them updated. At a later time, the other unsynchronized

sites must participate in a quorum to get updated or they may contain stale data.

2. ACTIVITY updates. The same limitation applies to the ACTIVITY images held

at their respective sites. Communication must be available between a quorum of

sites if the data on any given controlling site is to be replicated. This, as far as

AIDE is concerned, could be a major problem if multiple organizations are

involved and they do not wish to leave network ports open for communication out-

side of their organization. Possible lack of communication is the primary reason

why image weights were distributed as they were in Figure 4-8.

3. Decrease in performance. As more hosts are distributed throughout the IDS

domain, a decrease in performance can be expected due to the added stress to the

sites that contain images of the ACTIVITY database and the communication

needed to establish quorums between sites.

88

www.manaraa.com

Regardless of the above limitations and stipulations concerning communi-

cation amongst the nodes, the primary images are still availability and distribution of

common data is achieved. It should be noted that the above scheme, which purposely par-

allels the current AIDE scheme, may easily be broken down to allow for another layer

within the hierarchy so the databases could be further distributed with respect to each site.

4.5 Low-Level Design

This portion of the thesis describes the high-level design and implementation using

lower-level design structures [Wu 3-28 - 3-33]. The only portions of the IDS built at this

point are the data management components represented in Figure 4-5.

1. Determine object representation. This step involves implementing the data within

the database objects, or attributes, as either primitive types or as other referenced

objects. In the end, however, all attributes should be maintained as primitive

types.

2. Refine inheritance structure. After the database translation, there is no need for

any additional inheritance. All like-classes have been either integrated or modified

using inheritance.

3. Implement object methods. Methods are assigned based on responsibility, and

new classes may be added later during coding. As a minimum, set and get meth-

ods for each attribute made available for reading and writing are to be added.

Additionally, needed operations also include set and get methods to establish or

return any primitive type necessary within the application and overloaded con-

structors.

89

www.manaraa.com

4. Establish object visibility. For the IDS data repository used in this thesis, visibility

is established through relationships between objects. There are other ways of

obtaining the needed visibility, such as, inheritance, making one object an attribute

of another, implementing one object as a static class, and passing the needed object

to all the objects that will need to use it.

5. Identify polymorphic methods. In an 00 program, methods may need to be

implemented lower than the superclass in an inheritance hierarchy. In the current

implementation, there is no need.

6. Apply OOD using OOPL. Objectivity for Java is used to build the database.

Objectivity/C++ is another alternative, but the programs and taps are primarily for

testing and demonstration purposes and Java provides an ideal rapid prototype

environment. In the future, C++ bindings can be used to incorporate more perfor-

mance into the system and create a smaller footprint on the tapped machine.

7. Perform physical design. Here, the database is built using Objectivity/DB and the

programming language of choice. The design, ready to be implemented, is laid out

on disk and files are established to hold data. Using Objectivity/DB, the federated

database is established via command line input. The databases, containers and

objects are all built within Java. The images to the various databases are also

established via command line input.

8. Design user interface. Java is also used to design the user interface. This is not a

major focus of this research, so only a rudimentary program will be used to show

data in the database.

90

www.manaraa.com

4.6 Tap Application Development

To develop the application to insert data, a general well-known 00 methodology is

used. In his thesis, Wu describes only in limited detail the process of designing the appli-

cation to access the database. Therefore, the Object Modeling Technique (OMT) will be

used to transform the standing notion of what a tap should accomplish into an object model

that can be translated into code [Blaha 118-119].

4.6.1. Conceptualization

The tap application is used to retrieve information from a sensor's data store for

insertion into Objectivity/DB. Due to the heterogeneous nature of the networks upon which

the taps will exist, they are built as cross-platform applications so a great deal of code reuse

is realized.

The systems where the taps will reside may also be heavily loaded due to the sys-

tems' monitoring of high volumes of network traffic. Therefore, the applications are as

small as possible and consume only the resources that are absolutely necessary to accom-

plish the needed tasks.

A diagram depicting the OOAIDE system is the same as that in Figure 2-3 for the

existing AIDE system. However, instead of the tap communicating with Oracle, it com-

municates with Objectivity/DB through a set of configurable ports used by the DOODBMS

for distribution and object locking.

4.6.2. Analysis

The following capabilities are present within the tap application. This list was gath-

ered using analysis of the existing system and knowledge gained while interviewing a

number of its technicians.

91

www.manaraa.com

1. Since the sensors exist on a variety of platforms, the tap is able to conform to those

platforms.

2. The tap is able to read from files, relational databases, object-oriented databases,

and data streams where sensor data may be stored.

3. The tap is able to insert into Objectivity/DB all events/boundaries that are pro-

cessed by the tap application.

4. The application is written such that as few changes as possible are needed to allow

it to interface with another type of data storage device or hardware platform for

retrieving information.

5. Since the system is distributed, network connectivity is imperative.

In order to model the above behavior, a set of classes are generated. The process is

similar to the process used in the beginning of this chapter for refining a class diagram once

the tables were converted to tentative classes. The main difference is that the analysis starts

with a set of capabilities that the application should provide versus a detailed ER diagram.

The following classes are used to model the behavior:

1. OOAJDE. Top-level application class that "ties" the system together. Because

multiple types of taps or other classes could access the DOODBMS in the future,

this class serves as a level of abstraction between the remainder of the application

classes and the data that they will access. The level of abstraction is also needed in

case of future changes made to the database. Instead of updating each class when

92

www.manaraa.com

objects are moved around to various containers or databases, this class will be

called so it can place the data in the correct place within the federation. It provides

functions to do the following:

• Connect to the DOODBMS

• Open and close various partitions, databases, and containers for access by other

classes

• Retrieve a session and policy for other applications to use in accessing persis-

tent data

• Provide a set of finder methods to be used in scanning the databases and con-

tainers for specific objects that conform to a query

• Provide a set of accessor {get and set) methods for applications to add objects

to the database that only exist at the container level, like those objects of class

SITE and SUPPORTEDSENSOR that do not have a higher-level containing

entity

• Perform high-level administrative functions for building, deleting and reinitial-

izing containers and databases

2. Tap. The tap class serves as a superclass to all taps. There are a variety of com-

mon functions that each tap needs when connecting to and using the DOODBMS.

Other than maintaining references to the various storage objects, such as a partition

93

www.manaraa.com

or database, the tap needs only session information to insert events. The methods

in the OOAIDE class provide the functionality needed to place the information

into the database. The functionality includes:

• Maintain references to the tap's site, host, sensor, supported sensor, and sensor

signatures

• Provide methods for using other databases, files, ports, or other storage media

where from sensor information is to be retrieved

• Create events for placement into the DOODBMS

• Create relationships between events and other objects as designated by the

OOAIDE object diagram (DOODBMS schema)

• Inherit from OOAIDE in order to provide overall database functionality to the

various taps

3. Tap subclasses. Inheriting from Tap, these subclasses represent the various taps

needed by the overall OOAIDE system. They are the heart of information retrieval

and provide the various methods needed for the Tap class to be able to function in

a variety of environments.

4. OOAIDETools. The tools class extends OOAIDE and provides the architecture to

support various tools for use by an administrator or analyst. In Figure 4-10, the

utilities for loading signatures for various IDSs and a GUI are associated with the

OOAIDETools class.

94

www.manaraa.com

Figure 4-10. OOAIDE Class Diagram

- Maintains connection to Objectivity/DB
- Maintains session information
- References to open containers and databases

T\

Insert information and interface [\,
™th IDSs
- Maintains signatures and
sensor, host, site, and sensor
information for subordinate IDS
classes

SnortSigs RealSecureSigs AIDEOracle

Various tools for use by analysts. L^
GUIs, forms, import utilities, etc.

Specialized classfortransferring
information, such as signatures and
other IDS specific data, into OOAIDE
for use by Taps and analysts.

T\

4.6.3. System Design with OODBMS and Detailed Design

This step is where coding and integration takes place. In the final application

design, there are a number of classes that are not navigable from any other class; SITE and

SUPPORTEDSENSOR are good examples. For this reason, directly accessing the contain-

ers that contain these types of objects is necessary. Instead of integrating this functionality

throughout the code, which can be very costly in terms of maintenance, the top-level class,

OOAIDE, maintains the container references.

95

www.manaraa.com

4.7 Summary

This section described the implementation of a working model for a complete

object-oriented system to maintain data from multiple IDSs. The process involves convert-

ing the AIDE database into an object form and then building the application specific to stor-

ing persistent objects in the new database. The evaluation of the proposed design is

presented in the next chapter, along with a comparison of the new design to the existing

AIDE system.

96

www.manaraa.com

V Testing and Evaluation

Three enhancements that a DOODBMS would provide over an RDBMS are given

in Chapter I under "Research Hypothesis" starting on page 6. In keeping with the hypoth-

esis, there are three main focal points for testing and evaluating the design:

• Performance Benchmark. Measure throughput performance of inserting data gath-

ered from a sensor tap into both Objectivity/DB and Oracle 8i.

• Demonstrate distribution. Demonstrate the proposed distributed design of the

database as given in "Implementing Using Objectivity/DB" starting on page 82.

• OOP Language Standardization. Demonstrate that multiple taps may be built

from the same object-oriented design and OOP language to provide consistency

within the overall architecture.

5.1 Performance Benchmark

For performance testing of the proposed design, this thesis follows a process used
»

by Tomaz Domanjnko, a researcher at the University of Maribor in Slovenia. The proce-

dure was published in Java Report for evaluating OODBMSs against RDBMSs for object

persistence [Domanjnko].

This section will focus on two metrics: record/object insertion and query throughput

given increasing numbers of objects, and the amount of programming code required to

accomplish the task. The latter, as stated by Professor Domanjnko, is one of the most pop-

ular software metrics.

97

www.manaraa.com

5.1.1. Testing Steps and Architectures

In order to gauge the difference in performance between the two databases, test

results from insertions and queries against AIDE and OOAIDE are compared.

5.1.1.1. Insertion.

The test case for the insertion includes taps for the Real Secure IDS from

ISS. The architecture of this tap is given below.

Figure 5-1. Real Secure Tap Architecture

HOST

Real Secure
Data Repository

Microsoft Access
Database

Tap

SITE

AIDEVOOAIDE
Database

The current AIDE tap for Real Secure was built using Perl with a number of librar-

ies to enable access to Oracle and other relational databases. The Perl program code and

needed Oracle PL/SQL triggers are listed in Appendix C. The programming model used

for this tap is not common amongst the taps used within AIDE. Most use a tap/bridge archi-

tecture programmed in C, but this tap connects directly to the database and does not require

98

www.manaraa.com

the extra overhead of transmitting data to a bridge and having the bridge insert the data into

the database through the triggers. The following functionality is implemented into the new

00AIDE tap:

• Connection to Real Secure Microsoft Access database

• Connection to OOAIDE database

• Retrieval of data from Real Secure database. In Java, this will be done using the

generic Java Database Connectivity API (JDBC) [Farley 190]

• Begin timer (only for testing)

• Iterate over data and insert it into Objectivity/DB

• End Timer (only for testing)

• Have the process "sleep" for a predetermined amount of time before retrieving

additional records. The sleep time for the current AIDE tap is one minute

There is some additional functionality is not implemented due to its irrelevance to

the test environment. This includes:

• Real Secure database synchronization procedure. This code is responsible for syn-

chronizing the database with the network sensors so that any data residing in the

Real Secure main program's cache, which resides on the host database machine, is

written to Access. The database used in this benchmark is static.

99

www.manaraa.com

Routine for choosing which Real Secure sensors are to be synchronized with the

database. Because the OOAIDE tap is not synchronizing the engine and sensors,

there is no need to specify these parameters.

Heartbeat signal. Ordinarily, the AIDE tap sends a heartbeat signal, which returns

whether or not the Oracle database is available for connection. The test OOAIDE

tap assumes that the OOAIDE database is online and available.

Trigger code includes checking of the BOUNDARY table to see if an event was

caught by a firewall or router. This functionality is not included due to the fact that

the AIDE system was not fully utilizing this table at the time of this writing. Addi-

tionally, there are alternative ways for OOAIDE to provide this functionality with-

out comparisons to objects of type Boundary stored in the database at the time that

Event objects are instantiated.

Trigger code also includes a ROLLED_UP_EVENT lookup and update procedure

necessary for updating the EVENT table. This functionality is not included. The

ROLLED_UP_EVENT table is implemented to simplify the retrieval of specific

event information and mainly maintains counts of how many events have occurred

for a given signature. There is no equivalent in the OOAIDE model because such

constructs are better implemented at the container level rather than as objects.

The test case for insertion of records involves the following:

100

www.manaraa.com

• A standardized test case for insertion must be built that demonstrates common

functionality across taps using both databases. To ensure that taps are built in the

same manner, a current sensor tap used with Oracle 8i and the trigger code that the

tap utilizes to insert its data is reverse-engineered. Another tap is then built using

the OO architecture proposed in "Tap Application Development" starting on

page 91 that provides the same functionality and stores the same data.

• Data is collected from a common data source located on the host machine.

• Testing is limited to the insertion of records into the target database. As a result,

functions that read data from the sensor and process it on the host machine prior to

being inserted are not reflected in the results. Preprocessing of the information,

however, does not include fetching host and site data from the target database to

link records or objects together to establish relationships. This is a necessary func-

tion in inserting the records/objects and is included in the results.

• A number of records are inserted into the database. Each record corresponds to a

single event and all records are of the same size. The test is run with 100, 500,

1000, 2000, 5000, and 10000 records. Each set is run ten times to establish an

overall average.

• Identical machines are used to run the tap and database over the same network.

5.1.1.2. Queries.

Four queries are used to measure performance at various levels within the

object hierarchy. The four queries range from retrieving a large amount of records, as

101

www.manaraa.com

would be the case for an analyst's tool who might be correlating a large number of records,

to a small number of records, such as pinpointing the search space to a specific known hos-

tile IP address. For simplicity, the query descriptions are given in the next section dealing

with the results of the tests.

All queries are built using Java 1.3 utilizing JDBC and Objectivity's own connec-

tivity method, AMS. Furthermore, they are compiled using Sun's JDK1.3 javac compiler

with the '-0' switch indicating that the classes should be optimized for runtime efficiency.

All four queries are reproduced a total of ten times each for each database, and then each

set of runs are averaged to get the overall result for the particular query. The data used in

the queries is the same data inserted by the Real Secure taps in the previous insertion test.

Before the queries are made, the databases are checked to make sure the data each holds is

identical to the other. As the results are returned, the number of objects/rows are also

checked to make sure the databases are each returning the correct results.

5.1.1.3. Test Data

Test data to insert into the two databases originates from the Microsoft

Access database used by Real Secure. The events input into the database are the result of

using Nessus, a remote security scanner, to probe several machines on the network where

Real Secure is running [Nessus]. The scanner is run numerous times to allow the number

of events in the database to accumulate. Each event corresponds to a single record in the

database. The Real Secure database, specifically the RSLog table, contains the information

in Table 5-1. The fields in bold print are retrieved and inserted into AIDE and OOAIDE:

102

www.manaraa.com

Table 5-1. Real Secure Database Fields

Event Date ICMP Type

Event Name ICMP Code

Protocol Event Priority

Source Port Kill Action Specified

Destination Port Source Ethernet Address

Source Port Name Destination Ethernet Address

Destination Port Name Raw Data Length

Source Address Raw Data

Destination Address Decode Pair Count

Source Address Name Engine IP

Destination Address Name Pulled to Enterprise Database (boolean)

TCP Flags Engine Type (Network or Host)

The Real Secure database consists of events from the following types of

attacks: SYN Flood, HTTP Shells, Windows Access Error, FTP Bounce, FTP Privileged

Bounce, FTP Syst, Email Ehlo, Portscan, Pingflood, Backorifice, Email turn, HP Open-

View SNMP Packdoor, HTTP Java, Mstream Zombie, Queso Scan, SNMP Suspicious Get,

SSH, Sun SNMP Backdoor, and IP Halfscan.

5.1.2. OOAIDE Real Secure Test Results

Two series of tests, insertion and query, are conducted on the two systems and the

results are compared. The results of both tests are shown in Figure 5-2 and Figure 5-3.

Table 5-2 shows the hardware configuration used in all the tests. The values given for the

insertion experiments are averages of five iterations for each of the object counts indicated

on the x-axis. There was almost no variance in the samples gathered for the insertions. All

of the reported times are within one second of the times indicated on the chart for each of

the tests.

103

www.manaraa.com

The query experements were run ten times for each query indicated on the x-axis in

Figure 5-3. The variance surrounding the average for each query is indicated with an error

bar on the chart.

Table 5-2. Hardware/Software Test Configuration

Machine Role

933 MHz Pentium III
256 MB RAM
7200 RPM MAXTOR HD

OOAIDE & AIDE Database Server

MS Windows 2000
Oracle 8i
Objectivity 5.2

400 MHz AMD K6-3
256 MB RAM
7200 RPM IBM HD

Host platform executing Real Secure taps

MS Windows 2000
ActiveState Perl 5.6
Personal Oracle8 Client
Objectivity 5.2
JDK 1.3

233 MHz AMD K6-2
64 MB RAM
5400 RPM MAXTOR HD

OOAIDE Replicated Database

RedHat Linux 6.2
Objectivity 5.2

Figure 5-2. Object Instantiation and Record Insertions for AIDE and OOAIDE Tap

120

100

~ 80 u
0)
(0

T 60
E
F 40

20

0

-•-OOAIDE

AIDE

~~&- OOAIDE w/Rep

100 500 1000 2000 5000 10000

of Objects/Records

104

www.manaraa.com

Figure 5-3. Queries on AIDE and OOAIDE via Java

in
•a
c
o u
0)
in

■ OOAIDE

DAIDE

L
All Erents

Query
All E\ants with

Signature
E\ents of
single IP

Eysnts of
single IP with

Sensor

5.1.2.1. Insertions.

The results given above would indicate that OOAIDE is at least 2-3 times

faster when there are only several hundred objects/records instantiated or inserted into each

of the two databases. However, those numbers increase dramatically around 2000-10000

objects/records.

There are two primary reasons that contribute to OOAIDE's insertion performance

increase over AIDE.

1. No table lookups. Since OOAIDE resembles a pure object model, there are no

table lookups to gather information needed to maintain relationships between

objects. In AIDE, there are two tables used to gather a number of pieces of infor-

mation that are needed to insert an event into the EVENT table. When a record is

first submitted to the database for insertion, a trigger calls the

105

www.manaraa.com

SENSOR_SIGNATURE and AIDE_SIGNATURE tables to get the priority, cate-

gory, and signature name.

In the OOAIDE model, there are relationships that still need to be maintained, but

resolving references amongst the objects is occurring much faster. First, the rela-

tionships are being maintained on the host side and not the server side. This means

that while the workload would increase for the AIDE database, the work is distrib-

uted to the hosts in the OOAIDE database. Likewise, through the use of hash

tables, hash maps, trees, or any other Java construct that allows for storage and fast

retrieval of objects, relationships can be built significantly faster than table look-

ups will allow since only a subset of data is being queried. For example, it would

be unwise to perform a query on the DOODBMS for a sensor's signature every

time we need to build an object that requires it. Instead, a hash map can be built

that stores the objects only pertaining to that particular sensor and every time one

is needed, it is in memory because a reference to the object is being maintained by

Java. This is known as anticipatory client-side caching [Loomis 194]. To keep the

references synchronized with the DOODBMS, a simple iteration through the con-

struct can be performed and the objects will be updated automatically.

2. Another factor apparent in testing the databases is that inserting large numbers of

objects at a time scales better in the DOODBMS. In the AIDE tap, clusters of 50

records are sent to the database for insertion at any one time, which means that as

the number of objects to be inserted increases, more transactions are needed to

send them to the relational database. However, the OOAIDE tap doesn't need to

commit objects until the transaction is to take place for all of the objects. The

106

www.manaraa.com

objects are made persistent when instantiated and manipulated in the host's mem-

ory until a commit method is explicitly called. This means that network transmis-

sion and the work needed in communicating with the database is used efficiently.

5.1.2.2. Queries.

Queries against the two databases provided mixed results, none of which

were conclusive. There are a number of reasons, however, for the results that were gathered

for each query.

The Oracle database would've been much quicker for a number of the queries had

the ROLLED_UP_EVENT table been used. However, the tests were written such that tra-

versals through the object hierarchy were necessary to retrieve information from multiple

RDBMS tables and multiple DOODBMS containers without any optimizations. Each of

the four queries are explained below:

1. All Events. The first query involves the retrieval of all the events in the database -

10393 records/objects. There are no relationships involved and as the results are

received, objects of type Event are instantiated. The difference in time, as indi-

cated in Figure 5-3, can most likely be attributed to the overhead within the Oracle

database and efficient paging of the Objectivity/DB. Oracle must first retrieve the

records from its table and then send the specified columns and rows over to the

application through JDBC. In contrast, Objectivity/DB has stored all the events in

a single container where they are laid out on disk in successive pages. When event

objects are requested, it begins sending pages to the application via AMS. It is up

107

www.manaraa.com

to the application to filter the pages for the needed objects. In this case, there is no

overhead associated with filtering the pages because all objects are to be included

in the results.

2. All Events with AIDE Signature. This query involves the selective retrieval of

events that contain an AIDE signature reference or column value not equal to

"null." In other words, there was a valid AIDE signature for each event regardless

of whether or not a sensor signature is present.

The results of this query show that both databases perform equally well. Because

only certain events are extracted from the databases, Oracle is just as efficient as

Objectivity/DB. Oracle, by design, is expected to perform such queries very effi-

ciently. The main reason why Objectivity/DB does not perform as well on this

query is due to the fact that reference fields, such as those looking for AIDE signa-

tures, cannot be used in a query. Therefore, all the records must be retrieved from

OOAIDE and a separate Java routine run on the objects to determine if the AIDE

signature relationship actually associates the given event to an AIDE signature. If

the relationship reference is "null," then the event is dropped from the selection.

Objectivity/DB performs the queries as well as the Oracle database even though

the application doing the majority of the work is on a machine half as fast as the

Oracle database machine and a separate Java function is run after all the events

have been retrieved.

108

www.manaraa.com

3. Events of a single IP. This query involves retrieving events given a single IP

address. Out of the 10393 records/objects, 7256 are retrieved. As mentioned

above, Oracle excels at simple, single-table queries. In this case, however,

OOAIDE is slightly quicker than AIDE. This is mainly due to the fact that the IP

address is indexed within the OOAIDE database. Looking at queries from the cur-

rent AIDE graphical user interface (GUI), it is determined that the IP address of

the source of an attack is of major interest.

4. Events of a single IP with Sensor. In this query, records/objects of type Event are

retrieved from the databases with the intention of also capturing information con-

cerning the Sensor that placed the event in the database. In contrast to the previous

query, OOAIDE performs slightly better that AIDE in this test case. The reason

stems from the fact the AIDE must first join the Sensor and Event tables to gather

the appropriate information. In OOAIDE's case, the Sensor relationship is passed

to Java along with the Event. There is no need for the a join to take place in

OOAIDE and the reference is simply retrieved through a normal 'get' method call.

• 5.1.2.3. Code Requirements for AIDE vs OOAIDE

Code requirements for each test case, insertion and query, differ given the

task. In the case of insertion, the amount of code does not differ dramatically at first glance.

However, further analysis shows that the code required by AIDE to insert events is kept in

three different places within the system and calls between those portions of the system take

additional time and resources. The insertion code for AIDE and OOAIDE is given in

Appendix C.

109

www.manaraa.com

For queries, the difference in the amount of code required to accomplish the task is

more dramatic. The actual code for each query is listed in Appendix D. SQL, by nature,

does not fit well into the object-oriented programming model. As a result, Java, and other

languages, must provide wrappers or specialized methods to integrate SQL into the envi-

ronment. In Java, Statements and Resultsets are used to gather data returned from a JDBC

connection SQL query. These Resultset must then be iterated over and the individual col-

umns inserted into the appropriate objects.

In Objectivity/DB, the code involving queries is much different. There is an Iterator

class used by Objectivity/DB for Java, much like the one used for Java linked-list type

classes (e.g., Vector), but that is where the similarity ends. Objectivity/DB can query on

two different levels: database and container. A string predicate is built using regular

expressions, which in some terms may be considered the SQL statement of the DOO-

DBMS. The container or database is then sent the query and is told what type of objects to

return. An Iterator is then used and the objects of interest are extracted. The difference is

in the deliverables. In the relational case, the Resultset contains raw data that must be trans-

formed into object form for Java to use. In the object-oriented database case, the deliver-

able is in fact an object that Java recognizes, along with all the relationships and inheritance

hierarchy intact. As a result, method calls may begin on the data immediately and do not

need to be preceded with "set" statements initializing all of the object's data.

5.2 Database Distribution

As seen above in the test results, database distribution is used in the testing of

OOAIDE'S performance. The appropriate autonomous partitions and databases images are

copied to a second system, which is automatically updated when the primary image is

updated. The distribution seems to have no ill effects on the overall system even when

large amounts of objects are made persistent.

110

www.manaraa.com

One point worth noting is the application's dependence on communications with

the images. It would be very beneficial if the application could connect to just one image

and the other image is updated by the DOODBMS itself. However, this is not the case. In

order for any image to be updated, it has to participate in a quorum. This was one of the

main reasons for distributing the weights between the images to where one is greater than

the other, which establishes one image as the owner.

The communications burden on the network as a result of multiple images could be

both small and large. In the case where the burden is small and network usage is optimal,

objects are created and inserted into the database in very large numbers. Too much over-

head is created when multiple objects cross the network in many packets. When many

objects are sent at the same time, the number of packets decreases and network usage

becomes more optimal. To measure the network load, traffic leaving the machine contain-

ing a tap would need to be monitored for packets destined for the database. Likewise, any

traffic resulting from the TCP connection to the database back to the tap would also need

to be monitored. Such a test is possible, but becomes difficult when the tap traffic must

cross a heavily-loaded network such as the Internet. When multiple taps are connected to

multiple databases over such a network, the problem of testing becomes even more diffi-

cult.

5.3 Demonstrate Taps Utilizing Common OOP Design

To demonstrate that a common design and language may be applied across a heter-

ogeneous network on different types of IDSs, another tap is deployed on a Linux platform

to retrieve data from the Snort IDS. Separate connections are made to the database from

both the Real Secure and Snort taps and the database is distributed between two systems.

The flexibility of the design is the result of placing events from each tap in their own

containers. Without this separation, write locks would need to be managed very carefully

111

www.manaraa.com

so that multiple taps could access shared containers. However, the lock server is easily able

to lock and manage two separate containers for two separate taps.

5.4 Summary

The chapter lays more credibility to the design of an IDS data repository using a

DOODBMS. The results for insertion of data are very encouraging for high-speed trans-

actions. Furthermore, the query results were better than expected given the simplicity of

the queries and the fact that not many levels in the OOAIDE object hierarchy are traversed.

The query results, although inconclusive in proving whether or not the design is the best for

concurrency of multiple analysts workstations, does provide additional insight as to how

the design could be modified to account for the types of queries that will most likely be

used.

112

www.manaraa.com

VI. Conclusions

In this thesis, an IDS data repository is successfully modeled, built, and tested. Ini-

tial tests indicate that the new OOAIDE meets, and in some cases, exceeds the performance

levels of the current AIDE system.

6.1 Implementation Critique

There are a number of limitations discovered as a result of the OOAIDE develop-

ment process. This section presents the limitations of the new object model and some

advantages and disadvantages associated with OOAIDE.

6.1.1. AIDE to OOAIDE Translation Limitations

The implementation as given provides functionality in keeping with the functional-

ity needed in an IDS data repository. It collects data, parses it, and sends it to the database

in the form of objects. However, the model does not allow for a few key features that are

used in AIDE. These features do not integrate well into the object model:

1. A number of tables in the AIDE model facilitate the counting of records in var-

ious forms. The ROLLED_UP_EVENT table discussed in the previous chapter

is one example. In the object model, such objects may be used for this purpose,

but it could probably be handled better at the container level. Objects to count

objects are not considered the norm in object-oriented programming, but it may

be the only way to solve the problem of getting certain pieces of key informa-

tion quickly.

113

www.manaraa.com

2. Checking objects against other objects upon insertion is very inefficient. The

BOUNDARY table contains records from various firewalls and routers. When

an EVENT is received, it is checked against the BOUNDARY table to see if it

was actually blocked. In AIDE, this is done in the trigger as soon as the event is

received for insertion. The OOAIDE tap does not perform this lookup due to its

heavy network performance cost. To do so, the application would have to com-

pare each and every event to all the objects of type Boundary over the network.

This may be more efficient than at first glance due to the fact that entire pages

are usually fetched from the database when a call is made and then cached by

the application. However, there may be hundreds of thousands of objects to

search and this type of correlation may better be suited to a process elsewhere

on the network or on the DOODBMS site machine itself.

6.1.2. Accomplishments

The design does accomplish the key objectives listed in Chapter I:

1. Performance. OOAIDE shows an increase in performance in object insertions

with the use of pure object data persistence and OO program integration. The

overhead of building SQL statements and mapping all the attributes to specific

columns is completely eliminated. Initial tests of traversing the object model to

query for specific information also show promise. The preliminary retrieval

results show that the two are close in their retrieval rates of specific objects,

indicating that insertions of a large number of objects and distribution can exist

without a notable decrease in performance in information retrieval.

114

www.manaraa.com

2. Distribution. OOAIDE is successfully distributed between two machines on a

network. The needed databases are successfully imaged and object insertions

suffer no decrease in performance. Likewise, both Windows 2000 and Linux

are used in the distributed tests demonstrating that distribution can be used on a

heterogeneous network.

3. Standardized Object-Oriented Model. As a side-effect of using the DOO-

DBMS, a standardized object model is built to accommodate the overall system

to include both input and output of information. Using relationships, inherit-

ance and normal methods, the application can be deployed in both a tap and

analyst environment. And although Java is used as the sole language for the

research presented in this thesis, C++ and Smalltalk are both supported by

Objectivity/DB with no modifications to the 00 database or its contents.

6.1.3. Disadvantages

With all of the functionality of the new model, there are still some disadvantages to

consider. Although most of them do not pertain directly to the technical aspects, they

should still be recognized as potential trouble spots should a system such as OOAIDE ever

be deployed into an operational environment.

1. Initial startup and DOODBMSfamiliarization. Although a DOODBMS is a

data store similar to an RDBMS, almost none of the terminology and interfaces

are similar. Whereas an RDBMS is centered around tables and columns, the

DOODBMS stores objects with attributes in containers and databases. Even

the term database does not translate smoothly since it is considered to be

115

www.manaraa.com

another type of collection object in a DOODBMS as opposed to the primary

datastore encapsulating all aspects of the data as it is in an RDBMS. For this

reason, anyone previously administering an RDBMS will need to become very

familiar with object diagrams and the programming language to be used in

building and administering the database.

2. Maintenance. From an object modeling perspective, data can be well encapsu-

lated and relationships easily defined when designing the DOODBMS. How-

ever, using the model derived through the research in this thesis, maintenance

of taps and other programs distributed throughout the federation could become

cumbersome. If the DOODBMS changes, then the applications using the

DOODBMS must also be changed to reflect the new object model.

6.2 Future Research

This thesis deals with the building of the architecture from the bottom up. This

means that the database, although re-engineered from the original AIDE database, is

designed around the data needed for a given tap to insert IDS information and retrieve

information needed to establish relationships. There are many directions for future

research to build upon the existing model, or develop an even better model. Below are

listed just a few areas that should be considered:

• Object retrieval. This model does address the retrieval of objects from the data-

base for use by the analyst, but a much more thorough job of testing needs to be

accomplished before the operations are optimized. Such information will be

imperative to the success of the overall model and storage decisions made in this

116

www.manaraa.com

thesis. The decisions in this thesis are based mainly on concurrency involving the

insertion of objects into the database to facilitate high-speed networks and model-

ing the system based solely on the existing AIDE system.

Server-side vs client-side processing of objects and correlation engine. The foun-

dation of this thesis involves the notion that distributing the load to the hosts per-

forming the collection of data will allow the database to service more hosts over

higher-speed networks. However, if multiple checks need to be made against

objects within the database, then the load on the collecting machines may increase

to a level that will impair their effectiveness as IDSs on the network. Therefore,

correlation programs, processes that attempt to match events to boundaries or

events to events, will probably need to be run on the server containing the data-

base.

The correlations currently used by AIDE are highly simplistic in their approaches

and are built around Oracle using the various correlation tables and

ROLLED_UP_EVENT table. Further research is needed to assess what capabili-

ties event correlators should contain and design characteristics for a system such as

OOAIDE. At the very least, a correlation engine would need to be designed to

correlate Events and Boundaries, as well as correlate Events to other Events. This

can be done very efficiently on the database server given that a majority of the

workload has been distributed throughout the system on other hosts. In theory, a

much more advanced and robust application can be placed on the server versus the

simple versions used in the current AIDE system.

117

www.manaraa.com

• Agents. The taps built for 00AIDE are rather simple programs that are installed

on a given machine and process data. What are really needed are autonomous

agents that perceive their environment and react to it [Russell 7]. These agents

could be sent out into the network with addresses of known IDSs, find those IDSs,

install themselves on the host machines, and set up communications with a DOO-

DBMS. The agents can also be programmed to monitor their respecting IDSs and

report problems or other critical information. In the long run, they may even be

used to administer certain portions of the IDSs to allow remote administrators the

ability to manage multiple types of IDS sensors and repositories throughout the

federation.

6.3 Conclusion

Object-oriented database technology is still a fairly young discipline despite

advances over the past couple of decades. The relational model still continues to dominate

the Air Force, and will probably continue to do so. However, in the area of high-speed net-

works where information needs to be placed in databases very quickly and efficiently, the

distributed object model may prove better in terms of performance and pure distribution.

The research presented in this thesis was not meant to fully establish OOAIDE as the only

DOODBMS substitute for AIDE, but instead was meant to demonstrate that such a concept

is not only feasible, but advantageous.

118

www.manaraa.com

Appendix A. AIDE Data Dictionary

EVENT_CATEGORY : Stores unique corr_msg_id from EVENT_LOG.
CORR_MSG_ID VARCHAR2(40) NOT NULL : Correlated Msg ID mapped to EVENTJLOG
CORR_CATEGORY NUMBER(2) NOT NULL : Correlated Category mapped to

CORR_CATEGORY

SUPPORTED_SENSORS
SENSOR_NAME VARCHAR2(20) NOT NULL : Name of this sensor
SENSORJTYPE VARCHAR2(1) NOT NULL : Type of sensor

SENSOR_VERSION
SENSORJMAME VARCHAR2(20) NOT NULL : Mapped to SUPPORTED_SENSORS
VERSION VARCHAR2(20) NOT NULL : Version of this sensor

INCIDENT : Stores main detail for AIDE created incidents
INCIDENTJD VARCHAR2(40) NOT NULL : Unique ID
USERLISTJD NUMBER(14,0): User that created incident. Mapped to USERLIST
INCIDENTJTITLE VARCHAR2(240) NOT NULL : Title for this incident.
ACCRYN VARCHAR2(20) NOT NULL : Mapped to SITE
CREATE_DT DATE DEFAULT sysdate : Date incident created
UPDATE_DT DATE DEFAULT sysdate : Date incident last updated
STATUS VARCHAR2(2) DEFAULT 'UI': Status of incident
ASSET VARCHAR2(255): Assets affected
IMPACT_SUM VARCHAR2(4000): Summary of this incident's impact
NOTES VARCHAR2(4000): Additional analyst notes
COUNTERMEASURES VARCHAR2(4000): Countermeasures deployed due to incident
REF_INCIDENT_ID VARCHAR2(40): Reference to another incident. Mapped to INCIDENT.

EVENT : Events reported by sensors/hosts.
EVENTJD VARCHAR2(40) NOT NULL : Unique key identifying particular EVENT.

Combines incremented number and SITE accronym (ex. 1234_RL)
BOUND AR Y_FOUND VARCHAR2(1): Whether or not this EVENT was found in the

BOUNDARY table and thus indicated being intercepted
SITE_NAME VARCHAR2(20) NOT NULL : Mapped to SITE
CREATE_SNSR_DT DATE : Date sensor reported event
CREATE_DB_DT DATE : Date event inserted
UPDATE_DT DATE : Data event updated
SENSOR_NAME VARCHAR2(20) NOT NULL : Mapped to SENSOR. Sensor that inserted row.
SRCIP VARCHAR2(15): Source IP of event
DESTIP VARCHAR2(15): Destination IP of event
DESCRIPTION VARCHAR2(1024): Description of event
SRCNAME VARCHAR2(125): Resolution of source IP to network name
DESTNAME VARCHAR2(125): Resolution of destination IP to network name
STAT VARCHAR2(2): Status of event
SIGNATURE VARCHAR2(100): Mapped to SENSOR_SIGNATURE
SIG_NAME VARCHAR2(40): Mapped to AIDE_SIGNATURE
SRCJD NUMBER(38,0):
PRIORITY NUMBER(1,0): Priority from AIDE_SIGNATURE

119

www.manaraa.com

SITE J.OC VARCHAR2(20) NOT NULL : Mapped to SITE
SRCPORT NUMBER(38,0): Source port of event
DESTPORT NUMBER(38,0): Destination port of event
PROTOCOL VARCHAR2(10): Protocol
PARTITIONJVAL NUMBER(38,0) DEFAULT to_char(sysdate,'d'): Partition where event was

placed within the database
TOT_COUNT NUMBER(10,0) : Total times this event has been reported

EVENT_LOG : Stores events that make up a correlated message
EVENT_LOG_ID NUMBER(12) NOT NULL : Unique eventjog identifier
PARTITION.VAL NUMBER(2) NOT NULL : HR Inserted into DB
CORR_MSG_ID VARCHAR2(40) NOT NULL : Correlated Msg ID mapped

to EVENT_CATEGORY
EVENTJD VARCHAR2(40) NOT NULL : Event Id mapped to EVENT

EVENT_LOG_HIST : Long-term storage of past history of events that make up a correlated message
EVENT_LOG_ID NUMBER(12,0) NOT NULL
PARTITIONJVAL NUMBER(2) NOT NULL : HR Inserted into DB
CORR_MSG_ID VARCHAR2(40) NOT NULL : Correlated Msg ID mapped

to EVENT.CATEGORY
EVENTJD VARCHAR2(40) NOT NULL : Event Id mapped to EVENT

EVENTJHIST : History table for events. Events are moved in here then deleted from the event table.
EVENTJD VARCHAR2(40) NOT NULL : Unique key identifying particular EVENT. Combines

incremented number and SITE accronym (ex. 1234JRL)
BOUND AR YJ^OUND VARCHAR2(1) : Whether or not this EVENT was found in the

BOUNDARY table and thus indicated being intercepted
SITE JJAME VARCHAR2(20) NOT NULL : Mapped to SITE
CREATEJSNSRJDT DATE : Date sensor reported event
CREATEJ)B J>T DATE : Date event inserted
UPDATEJDT DATE : Data event updated
SENSORJMAME VARCHAR2(20) NOT NULL : Mapped to SENSOR. Sensor that inserted row.
SRCIP VARCHAR2(15): Source IP of event
DESTIP VARCHAR2(15): Destination IP of event
DESCRIPTION VARCHAR2(1024) : Description of event
SRCNAME VARCHAR2(125): Resolution of source IP to network name
DESTNAME VARCHAR2(125): Resolution of destination IP to network name
STAT VARCHAR2(2): Status of event
SIGNATURE VARCHAR2(100): Mapped to SENSOR_SIGNATURE
SIG_NAME VARCHAR2(40) : Mapped to AIDEJ3IGNATURE
SRCJD NUMBER(38,0):
PRIORITY NUMBER(1,0): Priority from AIDE_SIGNATURE
SITE J.OC VARCHAR2(20) NOT NULL : Mapped to SITE
SRCPORT NUMBER(38,0): Source port of event
DESTPORT NUMBER(38,0): Destination port of event
PROTOCOL VARCHAR2(10): Protocol
PARTITION_VAL NUMBER(38,0) DEFAULT to_char(sysdate,'d'): Partition where event was

placed within the database
TOTJ30UNT NUMBER(10,0): Total times this event has been reported
FILENAME VARCHAR2(1024) :
EVENT JDS VARCHAR2(20)
USERNAME VARCHAR2(20)
LOGON JTPE VARCHAR2(1)

120

www.manaraa.com

USERLIST : This table is used to store data relative to info about identifiable system users authorized
or not

USERLISTJD NUMBER(14,0) NOT NULL : The username or login name associated
with the known individual

USERNAME VARCHAR2(20) NOT NULL : The username affiliated with the password
that Oracle tracks

FIRST_NAME VARCHAR2(20): User's first name
MID_NAME VARCHAR2(10): User's middle name or initial
LAST_NAME VARCHAR2(25): User's last name
ADDRESSJ VARCHAR2(40): First work address line
ADDRESS_2 VARCHAR2(40): Second work address line
CITY VARCHAR2(15): City of work address
STATE VARCHAR2(3): State of work address
ZIP VARCHAR2(10) : ip code of work address
COUNTRY VARCHAR2(10) : Country of work address
COMM_PHONE VARCHAR2(12): User's work commercial phone number
DSN.PHONE VARCHAR2(12): User's work DSN phone number
ALT_PHONE VARCHAR2(12): User's alternate phone number
FAX_NUM VARCHAR2(12): User's work related Facsimile phone number
ALT_FAX VARCHAR2(12): User's alternate Facsimile phone number
PAGER_NOTIFY VARCHAR2(2): Code identifying pager. Values are PH=Phone

only, PC=Phone and Code, NP= No Pager
PAGER_NUM VARCHAR2(12): Number dialed to access either the users pager or the

pager service
PAGER_CODE VARCHAR2(15): The additional code needed to address the users pager
EMAIL VARCHAR2(40): User's work related e-mail address
ALT_EMAIL VARCHAR2(40): User's alternate e-mail address
UNIT VARCHAR2(50): User's unit
MAJCOM VARCHAR2(50): Unit's MAJCOM
RANK VARCHAR2(50) : User's rank
ST AT VARCHAR2(10) : The status of the user: 'active', 'inactive', 'unauth','unknown'
CREATE_DT DATE DEFAULT sysdate : The date the user's information was added to the system
TITLE VARCHAR2(30): The person's official title, e.g. Analyst, Network Admin, etc.

HOST_SERVICE : Maintains relationships of hosts to its running services
HOST_SVC_ID VARCHAR2(40) NOT NULL
PORT_NUM NUMBER(10,0) : Port number of service
SERVICEJD NUMBER : Mapped to service table
APPROVED VARCHAR2(1): Whether or not the service is approved
HOSTJD NUMBER(14,4) NOT NULL : Mapped to HOST table
LICENSE_NUM VARCHAR2(100): License number of service
DESCRIPTION VARCHAR2(200): Description of service
PRODUCTJD NUMBER(14,4) : Product ID of product running service
CREATE_DT DATE : Date entry was created
UPDATE_DT DATE : Date entry was updated
PROTOCOL VARCHAR2(5): Protocol used by service

HOST : This table contains local domain registration info
HOSTJD NUMBER(14,4) NOT NULL : The primary key identifying a host record.

The decimal part of the key is the site number
HOSTNAME VARCHAR2(40): The symbolic name given to identify the computer
IP_ADDR VARCHAR2(15) NOT NULL : The 15 character internet address in the

format of nnn.nnn.nnn.nnn

121

www.manaraa.com

MAC_ADDR VARCHAR2(20): The hardware address on ethernet EPROM
in format xx:xx:xx:xx:xx:xx

HOSTJDENT VARCHAR2(40): Unix only = results of the hostid command
OSJD NUMBER(10,0) NOT NULL : The version of the primary OS running on the host
HARDWAREJTYPE VARCHAR2(15): Description of hardware used (i.e. Sun, HP, Intel)
PORT_CHECK_DT DATE : Date of the last successful internal portscan (STROBE)
COORDINATEJD NUMBER(12,2): Pointer to the lat/long coordinates in the

COORDINATES table identifying the hosts position
ACRONYM VARCHAR2(20): The acronym of the site where this host resides
STATE VARCHAR2(15): State in which the host resides
POCJD NUMBER(10,0): Cross-reference to USERLIST for person of contact
SERIAL_NO VARCHAR2(50): ADPE Serial Number
CREATE_DT DATE DEFAULT sysdate : Date entry was created
UPDATE_DT DATE DEFAULT sysdate : Date entry was last updated
FIXED_OS VARCHAR2(1): If set to "Y", then CMU utility cannot over-write the OSJD

CORR_CATEGORY: AIDE Correlation categories
CORR_CATEGORY NUMBER(2) NOT NULL : Correlated Msg Unique Identifier
PRIORITY_l_PERCENT NUMBER(6): AIDE Green Priority percentage
PRIORITY_2_PERCENT NUMBER(6): AIDE Yellow Priority percentage
PRIORITY_3_PERCENT NUMBER(6) : AIDE Red Priority percentage
CORR_TYPE VARCHAR2(80): Category Type
DESCRIPTION VARCHAR2(240): Description of Category

SERVICE: Contains services that may run on a host
SERVICEJD NUMBER NOT NULL : Primary key identifying service
SERVICE_NAME VARCHAR2(25) NOT NULL : Name of service
PORT_NUM NUMBER NOT NULL : Port number service normally uses
PROTOCOL VARCHAR2(5) NOT NULL : Protocol service normally uses
SVC_DESC VARCHAR2(200) " Description of service
CREATE_DT DATE : Date entry was created
UPDATE_DT DATE : Date entry was updated

SITE: Contains information related to the Site(s) this AIDE instance serves
ACCRYN VARCHAR2(20) NOT NULL : Accronym of the site
NAME VARCHAR2(50) NOT NULL : Site Name
CERT VARCHAR2(20): CERT Reporting to
DEFAULT.SITE VARCHAR2(1):
SITEJMG VARCHAR2(20) DEFAULT Vimg/dash.gif :
STATE VARCHAR2(2): State
CITY VARCHAR2(20): City
CREATE_DT DATE DEFAULT sysdate : Date created
UPDATE_DT DATE DEFAULT sysdate : Date updated
URL VARCHAR2(60): URL of associated site
LAT NUMBER(10,2): Latiude of Site
LON NUMBER(10,2): Longitude of Site

ROLLED_UP_EVENT : This table stores unique srcip,destip,destport,sig_name from EVENT table.
It is updated from the EVENTJJPD trigger

ROLLUPJD VARCHAR2(40) NOT NULL : THis is the PK generated by a sequence
SRCIP VARCHAR2(15): Source IP of the event
DESTIP VARCHAR2(15): Destination IP of the event
DESTPORT NUMBER(38): Destination Port of the event
UPDATE_DT DATE : Date of last occurance of this group

122

www.manaraa.com

CREATE_DT DATE : Date of first occurance of group
SIG_NAME VARCHAR2(40): AIDE Signature of event
TOT_COUNT NUMBER(IO) DEFAULT 1 : Total number of occurances of this group

SENSOR : Contains information about all possible Information Protection Sensors
SENSOR_NAME VARCHAR2(20) NOT NULL : Sensor Name mapped to SITE

and SENSOR_SIGNATURE
LOCATION VARCHAR2(20) NOT NULL : Where is the Sensor located
IP_ADDR VARCHAR2(15): IP Address of the machine where the sensor is Located
ACCRYN VARCHAR2(20) NOT NULL : SITE abreviation
STATUS VARCHAR2(1) DEFAULT 'F' NOT NULL : Status of the Bridge (T/F) Up or Down
PORT NUMBER(38): Port where the Bridge runs
FULL_PATH VARCHAR2(80): Full path to Sensor Bridge
ENCRYPTION VARCHAR2(3): Is the Tap - Bridge encrypted?
CREATE_DT DATE : Date/Time the bridge was started
UPDATE_DT DATE : Heartbeat date/time sent to bridge

BOUNDARY : Information about all events captured by network sensors
EVENTJD VARCHAR2(40) NOT NULL : Event ID (event_seq.nextval||"-"||sitename)
SITE_NAME VARCHAR2(20) NOT NULL : Site name reporting event
SENSOR_NAME VARCHAR2(20) NOT NULL : The name sensor feeding the event information
LOCATION VARCHAR2(10): Location of sensor
SIGNATURE VARCHAR2(100): Sensor Signature
SIG_NAME VARCHAR2(40): AIDE Signature
SITE_LOC VARCHAR2(20): Site location reporting connection
PROTOCOL VARCHAR2(10): Protocol of connection
SRCIP VARCHAR2(15): Source IP
DESTIP VARCHAR2(15): Destination IP
SRCNAME VARCHAR2(125): Source Name
DESTNAME VARCHAR2(125) : Destination Name
PRIORITY NUMBER(38): AIDE Priority
SRCPORT NUMBER(38): Source Port
DESTPORT NUMBER(38): Destination Port
CREATE_DB_DT DATE DEFAULT sysdate : Date/time inserted into DB
CREATE_SNSR_DT DATE : Date/Time sensor reported session
PARTITION_VAL VARCHAR2(2) DEFAULT to_char(sysdate,'d'): HR Inserted into DB

INCIDENT.EVENT
INCIDENTJD VARCHAR2(40) NOT NULL : Mapped to INCIDENT
EVENTJD VARCHAR2(40) NOT NULL : Mapped to EVENT

AIDE_SIGNATURE : AIDE Normalized signature data
SIG_NAME VARCHAR2(40) NOT NULL : The textual name for the unique signature
PRIORITY NUMBER(1,0) DEFAULT 1 NOT NULL : Ranks the level of concern associated

with the signature. Values are 1-3, where 1 is highest
CATEGORY VARCHAR2(40): The grouping of the signature into a category

(e.g., Probe, Denial of service)
DESCRIPTION VARCHAR2(256): The detailed explaination of the significance of the event
CREATE_DT DATE DEFAULT sysdate : Date the signature was created
UPDATE_DT DATE DEFAULT sysdate : Date the signature was last updated

SENSORJTYPE
SENSOR_TYPE VARCHAR2(1) NOT NULL : Unique key identifying type of sensor
DESCRIPTION VARCHAR2(20) : Description of the sensor type

123

www.manaraa.com

SENSOR_SIGNATURE
SENSOR NAME VARCHAR2(20) NOT NULL : Mapped to SUPPORTED_SENSOR
SENSOR_SIG_NAME VARCHAR2(100) NOT NULL : The signature name that the sensor

is sending
SIG_NAME VARCHAR2(40) NOT NULL : AIDE Signature
TOT_COUNT NUMBER(38,0): The running total of signature occurances for each sensor
TOT_FALSE_ALARM NUMBER(38,0): The total number of false alarms associated

with the reported signature
CREATE_DT DATE DEFAULT sysdate : The initial date the signature was recorded
UPDATE_DT DATE : The last time the signature event occurred

ARCHIVE : Detail of all archives performed via AIDE_Cleanup
ARC_DATE DATE NOT NULL
SITE_NAME VARCHAR2(20)
PARTITION VARCHAR2(2)
NUM_RECORDS NUMBER
EL_DELETES NUMBER(6)
EC_DELETES NUMBER(6)

SIGNATURE_CATEGORY : Stores correlation categories for AIDE_Signatures
SIG_NAME VARCHAR2(40) NOT NULL : Aide Signatures
CORR_CATEGORY NUMBER(38) NOT NULL : Correlated Category of the AIDE_Signature

124

www.manaraa.com

Site

Host

Appendix B. OOAIDE Data
Dictionary

private ToManyRelationship hosts : One-to-many association to subordinate hosts (Host)
private ToOneRelationship parentSite : association to another site (Site)
private ToManyRelationship users : Many-to-many association to users (Userlist)

private String latitude : latitude of site
private String longitude : longitude of site
private long timeUpdate : last time of update
private long timeCreate : time of creation
private String accronym : accronym of site
private String name : name of site
private String cert: controlling CERT
private String sitelmage : location of image
private String state : state where site is located
private String city : city where site is located
private String country : country where site is located
private String URL : URL of site

private ToOneRelationship site : association to parent site (Site)
private ToManyRelationship sensors : One-to-many association to subordinatesensors (Sensor)
private ToManyRelationship hostServices : One-to-many association to hosts

services (HostService)
private ToOneRelationship POC : One-to-one association to point of contact for this

host (Userlist)
private boolean fixedOS : Whether or not this is a fixed OS
private short ip_A : first octet of IP address
private short ip_B : second octet of IP address
private short ip_C : third octet of IP address
private short ip_D : fourth octet of IP address
private String latitude : latitude of this host
private String longitude : longitude of this host
private long timePortCheck : last time the comm port was checked
private long timeUpdate : last time of update
private long timeCreate : time of creation
private String name : name of host
private String M ACAddr: MAC address of host machine
private String osID : identifier for OS
private String ADPESerialNum : ADPE Serial Number
private String hardwareType : type of hardware host is running
private String hostldent: identity of host via ident command

Sensor
private ToOneRelationship host: Many-to-one association to parent host (Host)

125

www.manaraa.com

private ToOneRelationship supportedSensor : Many-to-one association to
the type of sensor that this is (SupportedSensor)

private boolean encryption : whether or not this sensor encrypts its traffic
private short ip_A : first octet of IP address
private short ip_B : second octet of IP address
private short ip_C : third octet of IP address
private short ip_D : fourth octet of IP address
private int AMSPort: port that AMS runs on for distribution
private long timeUpdate : last time of update
private long timeCreate : time of creation
private char status : status of sensor (up or down)
private String name : name of sensor
private String location : location of sensor
private String fullPath : full pathname on sensor for files related to OOAIDE

HostService
private ToOneRelationship host: Many-to-one association to hosts (Host)
private ToOneRelationship service : Unidirectional association to service (Service)

private int portNum : port number associated with the service that the host is running
private Date timeUpdate : last time of update
private Date timeCreate : time of creation
private float productID : ID of product running service
private boolean approved : whether or not the service has been approved
private String licenseNum : license number
private String description : description of service
private String protocol : protocol service is running under (TCP, UDP, etc)

Service
private int portNum : port number under which this service normally runs
private long timeUpdate : last time of update
private long timeCreate : time of creation
private String name : common name of service
private String protocol: protocol under which this service normally runs
private String description : description of service

Activity
protected ToOneRelationship reportingSite : Unidirectional association to site (Site)
protected ToOneRelationship sensorSignature : Unidirectional association to signature that the

the sensor is reporting (SensorSignature)
protected ToOneRelationship sensor : Unidirectional association to sensor (Sensor)
protected ToOneRelationship aideSignature : Unidirectional association to cross-referenced

AIDE signature (AIDESignature)

protected byte priority : priority from AIDE signature
private short ip_A : first octet of destination IP address
private short dstip_B : second octet of destination IP address
private short dstip_C : third octet of destination IP address
private short dstip_D : fourth octet of destination IP address
private short srcip_A : first octet of source IP address
private short srcip_B : second octet of source IP address
private short srcip_C : third octet of source IP address
private short srcip_D : fourth octet of source IP address

126

www.manaraa.com

protected short dstPort: destination port of activity
protected short srcPort: source port of activity
protected long timeUpdate : last time of update
protected long timeCreate : time of creation
protected String srcName : resolution of source IPto network name
protected String dstName : resolution of destination IP to network name
protected String protocol: protocol of activity

Boundary: extends Activity
protected String info : additional information concerning boundary entry

Event
private ToOneRelationship category : Unidirectional association to category (Category)

private String status : status of event
private boolean boundaryFound : whether or not entry was previously identified as boundary object

Incident
private ToOneRelationship site : Unidirectional association to site (Site)
private ToManyRelationship events : Many-to-many Unidirectional association to events (Event)
private ToManyRelationship incidents : association to other incidents (Incident)

private long timeUpdate : last time of update
private long timeCreate : time of creation
private String ID : unique ID of incident
private String title : assigned title of incident
private String status : status of incident
private String asset: what assets were affected
private String impactSummary : summary of the impact incident had
private String notes : additional analyst notes
private String coutermeasures : countermeasures used

SupportedSensors
private ToManyRelationship sensorSignarures : Many-to-one association to the supported

sensor's signatures (SensorSignature)

private String name : name of supported sensor
private String type : type of sensor
private String description : description for supported sensor
private String version : version of supported sensor

SensorSignature
private ToOneRelationship supportedSensor : Many-to-one association to supported sensors for

signature (SupportedSensor)
private ToOneRelationship aideSignature : Unidirectional association to AIDE signature related

to sensor signature (AIDESignature)

private long timeCreate : time of creation
private long timeUpdate : last time of update
private String name : name of signature

Category
private ToManyRelationship aideSignatures : Many-to-many association to AIDE signatures

for category (AIDESignature)

127

www.manaraa.com

private byte pril : OOAIDE green priority percentage
private byte pri3 : OOAIDE yellow priority percentage
private byte pri2 : OOAIDE red priority percentage
private String type : category type for events
private String description : description of category

AIDESignature
private ToManyRelationship categories : Many-to-many association to categories for this AIDE

signature (Category)

private byte priority :
private long timeCreate : time of creation
private long timeUpdate : last time of update
private String name : assigned name of signature
private String description : description of signature

Userlist
private ToOneRelationship site : Many-to-many association to the sites that a user has access to

(Site)

private int zip : zip code
private long timeCreate : time of creation
private long timeUpdate : last time of update
private String phoneComm : commercial phone number
private String phoneDsn : DSN phone number
private String phoneAlt: alternate phone number
private String phoneFax : fax number
private String phoneFaxAlt: alternate fax number
private String pagerNotify : code identifying pager
private String pagerNum : pager number
private String nameUser : user name
private String nameFirst: first name
private String nameMiddle : middle name
private String nameLast: last name
private String address 1 : address line one
private String address2 : address line two
private String city : city of user
private String state : state of user
private String country : country of user
private String pagerCode : additional code needed to access user's pager
private String email: e-mail address
private String emailAlt: altername e-mail address
private String unit: user's assigned unit
private String majcom : user's assigned MAJCOM
private String rank : rank of user
private String status : status (active, inactive, unauth, unk)
private String title : user's title (analyst, admin, etc)

128

www.manaraa.com

Appendix C. Real Secure Tap/Trigger
Code

This appendix contains code for both the AIDE tap, written in Perl, and the Oracle

database trigger, written in PL/SQL, that inserts an event. It also contains, for comparison,

the corresponding OOAIDE Java routine for executing the same function. Only lines of

code that are significant to the task are included.

C. 1 Perl/Oracle AIDE Real Secure Tap Code

Table 6-1. Perl Specifications for Real Secure Tap

Program/Package Version Description

Perl - ActiveState Distribution 5.6 Perl libraries used on 9.x/ME/
NT/2000 platforms

Database Interface (DBI) 1.14 Perl database interface for use
with relational databases (pri-
marily with ODBC)

Oracle Database Interface
(DBD::Oracle)

1.06 Perl database interface for use
with Oracle 7 and 8 databases

ReadKey (Term::ReadKey) 2.14 A perl program for simple termi-
nal control

while ($objDB->FetchRow()){
@RS_Data = $objDB->Data;

$ID = $RS_Data[0] ,-
$EventDate = $RS_Data[1];
$SourceAddressName = $RS_Data [2] ,-
$DestinationAddressName = $RS_Data [3];
$DestinationPortName = $RS_Data[4];
$EventName = $RS_Data [5];
$EngineIP = $RS_Data[6];
$SourcePort = $RS_Data[7];
$DestinationPort = $RS_Data[8];

$Insert = $Oracle_DBI->prepare("INSERT INTO EVENT
(SITE_NAME,EVENT_ID,CREATE_SNSR_DT,SENSOR_NAME,SRCIP,
DESTIP,DESCRIPTION,

SIGNATURE,SITE_LOC,SRCPORT,DESTPORT)
VALUES ('$SITE_NAME',event_seq.nextval||'-'||'$SITE_NAME',

to_date(' $EventDate ' , 'yyyy-mm-dd hh.24 :mi :ss') ,
'$SENSOR_NAME','$SourceAddressName■,

1$DestinationAddressName','$DestinationPortName',

129

www.manaraa.com

1$EventName','$EngineIP','$SourcePort',
'$DestinationPort')")

or die "Couldn't prepare statement: " . $Oracle_DBI->errstr;

$status = $Insert->execute()
or die "Couldn't execute statement: " . $Insert->errstr;

&Commit_To_Aide;

//////////////////////////////////////
///////////ORACLE TRIGGER/////////////
//////////////////////////////////////

IF :new.sig_name IS NULL THEN
IF :new.signature IS NOT NULL THEN

-- Get sig_name from SENSOR_SIGNATURE --
:new.s ig_name
:=sig_upd_function(:new.sensor_name,:new.signature);
--Go get priority AND category FROM AIDE_SIGNATURE --
l_array := find_cat(:new.sig_name);
-- Assign l_array(l) to PRIORITY --
:new.priority := l_array(l);

END IF;
END IF;
IF :new.sig_name IS NOT NULL THEN

-- Update actual event IN EVENT table. --
SELECT tot_count,update_dt INTO v_tot_count,v_update_dt
FROM rolled_up_event

WHERE srcip = NVL(:new.srcip, '0.0.0.0') AND
destip = NVL(:new.destip, '0.0.0.0') AND
destport = NVL(:new.destport,-1) AND
sig_name = :new.sig_name;

:new.tot_count := v_tot_count;
:new.create db dt:= v update dt;

///////////////////////////////7//7///
///////////ORACLE FUNCTIONS///////////
//////////////////////////////////////
(P_SIG_NAME IN VARCHAR2)
RETURN RETURN_TABLE_TYPE.ARRAYTYPE
IS

BEGIN
l_array(1) := 0 ;
l_array(2) := 0;
SELECT priority
INTO l_array(l)
FROM aide_signature
WHERE sig_name = p_sig_name;
RETURN l_array;

END FIND_CAT;

(P_SENSOR_NAME IN VARCHAR2 ,P_SENSOR_SIG IN VARCHAR2)
RETURN VARCHAR2
IS

BEGIN
SELECT sig_name, tot_count
INTO v_sig_name, v_tot_count
FROM sensor_signature
WHERE sensor_name = l_sensor_name
AND sensor_sig_name = p_sensor_sig;

RETURN v_sig_name;
END sig_upd_function;

C. 2 Java OOAIDE Real Secure Tap Code

while (true)
{

try

130

www.manaraa.com

pos)

Statement stmt = relCon.createStatement();
results = stmt.executeQuery("SELECT ID, EventDate, DestinationAddressName,

DestinationPort, SourceAddressName, SourcePort, ProtocolID, EventName, EnginelP,
DestinationPortName, SourceAddress, DestinationAddress FROM RSLog WHERE ID > " +
index + ";");

} catch (Exception e)

{
System.out.println("readData: SELECT: " + e) ;

}
try

{
session.begin();

while (results.next())

{
index = results.getLong (1) ,-
Java.util.Date eventuate = formatter.parse(results.getstring(2),

event = new Event(results.getstring(3), "",
new Long(results.getLong(4)).shortValue(),
results.getstring(5), "",
new Long(results .getLong(6)) .shortValue ()) ,-
sensorSig =

(SensorSignature)sensorSignatureHashMap.get(results.getstring(8));
protocolID = results .getlnt (7) ,-
if (protocolID == 0)

event.setProtocol("TCP");
else if (protocolID == 1)

event. setProtocol ("UDP") ,-
else

event.setProtocol("UNK");
eventCont.cluster(event);

event.setReportingSite(site);
event. setSensor (sensor) ,-
event. setTimeCreate (eventDate) ,-

if(sensorSig != null)

{
event.setSensorSignature(sensorSig);
aideSig = sensorSig.getAIDESignature0;
if(aideSig != null)

{
category = aideSig.getCategory();
event.setAIDESignature(aideSig);
event.setPriority(aideSig.getPriority());
if(category != null)

event.setCategory(category) ;

}
}

}
results. close () ,-
session.commit();

catch (InterruptedException i)

{
System.out.println("RSLog query exception (event data): " + i);
i. printStackTrace () ,-
super.terminate();

131

www.manaraa.com

}
catch (Exception e)

{
System.out.printin("RSLog query exception (event data): " + e)
e.printStackTrace();
super.terminate();

132

www.manaraa.com

Appendix D. Query Test Code

DA All Events

D. 1.1 AIDE

public void readRelDataOneJoin()

{
int index = 0;

Site site = new SiteO;
Event event;
java.util.Hashtable table = new java.util.Hashtable();

ResultSet results = null;

Statement stmt = null;

java.util.Calendar timel = java.util.Calendar.getlnstance();
System.out.printIn(timel.toString());
try

{
stmt = relCon.createStatement();

results = stmt.executeQuery(
"SELECT S.NAME, S.ACCRYN, S.SITE_IMG, S.STATE, S.CITY,

S.CREATE_DT, S.UPDATE_DT, S.URL, S.LAT, S.LON, S.CERT, "
+ "E.CREATE_DB_DT, E.UPDATE_DT, E.SENSOR_NAME, E.SRCIP, E.DESTIP,

E.DESCRIPTION, E.SRCNAME, E.DESTNAME, E.STAT, E.SIGNATURE, E.SIG_NAME, E.PRIOR-
ITY, E.SITE_LOC, E.PROTOCOL, E.SRCPORT, E.DESTPORT "

+ "FROM EVENT E, SITE S "
+ "WHERE (E.SITE_NAME = S.ACCRYN)"); // AND (S.ACCRYN = 'LZ')");

}
catch (Exception e)

{
System.out.printin("readData: " + e);

}

try

{
while (results.next())

{

if (index == 0)

{
site.setName(results.getString(1));
site.setAccronym(results.getString(2));
site.setSitelmage(results.getString(3));
site.setState(results.getString(4));

133

www.manaraa.com

site.setCity(results.getString(5));
site.setURL(results.getString(8));
site.setLatitude (results.getStringO)) ;
site.setLongitude(results.getString(10))
site.setCert(results.getString(11));

event = new Event();
event.setSrcIP(results.getString(15)) ;
event.setDstIP(results.getString(16)) ;
event.setSrcName(results.getString(18));
event.setDstName(results.getString(19)) ;
event.setStatus(results.getString(20));
event.setPriority(results.getByte(23)) ;
event.setProtocol(results.getString(25)) ;
event.setSrcPort(results.getShort(26)) ;
event.setDstPort(results.getShort(27));

event.setSite(site);

table.put(site.getNameO, event);

index++;

}
results.close();

}

catch (Exception e)

{
System.out .println ("Query exception: " + e) ,-
e.printStackTrace(),-
super.terminate();

}

java.util.Calendar time2 = Java.util.Calendar.getlnstance0
System.out.printIn(time2.toString());

System, out. printlnC" + index);

}

D.I.2 OOAIDE

public void readObjyDataOneLevel() {

Site site = new SiteO;
Java.util.Hashtable table = new Java.util.Hashtable();
Event event;
int index = 0;

System.out.println("Looking for Events");
Java.util.Calendar timel = java.util.Calendar.getlnstance()
System.out.println(timel.toString());

session.begin();

Iterator itr = eventCont. scan("Event") ,-

134

www.manaraa.com

while (itr.hasNext()){
event = (Event) itr.next () ,-

if(site == null)

{
site = event.getReportingSite();

}

table.put(site.getName0, event);

index++;
}

session.commit();

Java.util.Calendar time2 = Java.util.Calendar.getlnstance();
System.out.printIn(time2.toString 0) ;
System, out .printlnC" + index);

}

D.2 All Events with AIDE Signature

D.2.1AIDE

public void readRelDataTwoJoin()

{
int index = 0;

Site site = new SiteO;
Event event;
AIDESignature aideSig;
Java.util .Hashtable table = new Java.util.Hashtable () ,-
Java.util.HashMap aideMap = new Java.util.HashMap();

ResultSet results = null;

Statement stmt = null;

Java.util.Calendar timel = Java.util.Calendar.getlnstance() ;
Systern.out.printIn(timel.toString());
try

{
stmt = relCon.createStatement();

results =
stmt.executeQuery(

"SELECT S.NAME, S.ACCRYN, S.SITE_IMG, S.STATE, S.CITY,
S.CREATE_DT, S.UPDATE_DT, S.URL, S.LAT, S.LON, S.CERT, "

+ "E.CREATE_DB_DT, E.UPDATE_DT, E.SENSOR_NAME, E.SRCIP,
E.DESTIP, E.DESCRIPTION, E.SRCNAME, E.DESTNAME, E.STAT, E.SIGNATURE, E.SIG_NAME,
E.PRIORITY, E.SITE_LOC, E.PROTOCOL, E.SRCPORT, E.DESTPORT, "

+ "A.PRIORITY, A.CATEGORY, A.DESCRIPTION, A.CREATE_DT,
A.UPDATE_DT, A.SIG_NAME "

+ "FROM EVENT E, SITE S, AIDE_SIGNATURE A "
+ "WHERE (E.SIG_NAME IS NOT null) AND "

135

www.manaraa.com

+ "(E.SITE_NAME = S.ACCRYN) AND "
+ "(E.SIGNAME = A.SIG NAME)"); //(S.ACCRYN = ■LZ')")

catch (Exception e)

{
System.out.printlnf'readData: " + e);

}

try

{
while (results.next())

{

aideSig = null;

if (index == 0)

}

site = new Site() ;
site.setName(results.getString(1));
site.setAccronym(results.getString(2));
site.setSitelmage(results.getString(3));
site.setState(results.getString(4)) ;
site.setCity(results.getString(5));
site.setURL(results.getString(8));
site.setLatitude(results.getString(9));
site.setLongitude(results.getString(10))
site.setCert(results.getString(11));

event = new Event();
event.setSrcIP(results.getString(15)) ;
event.setDstIP(results.getString(16));
event.setSrcName(results.getString(18));
event.setDstName(results.getString(19));
event.setstatus(results.getString(20));
event.setPriority(results.getByte(23));
event.setProtocol(results.getString(25));
event.setSrcPort(results.getShort(26));
event.setDstPort(results.getShort(27));

if (laideMap.containsKey(results.getString(33))
&& results.getString(33) != null)

{
aideSig = new AIDESignature () ,-
aideSig.setPriority(results.getByte(28));
aideSig.setDescriptiontresults.getString(30));
aideSig. setName (results .getString (33)) ,-

}
aideMap.put(aideSig.getName(), aideSig)

event.setSite(site) ;
event. setAIDESignatureRef (aideSig) ,-

table.put(site.getName(), event);

index++;

136

www.manaraa.com

results.close ();

}

catch (Exception e)

{
System.out.println("Query exception: " + e);
e.printStackTrace();
super.terminate();

}
System.out.println("" + index);
java.util.Calendar time2 = java.util.Calendar.getlnstance();
System.out.println(time2.toString());

}

D.2.2 OOAIDE

public void readObjyDataTwoLevel() {

Site site = new SiteO;
java.util.Hashtable table = new java.util.Hashtable();

Event event;
AIDESignature aideSig = new AIDESignature();
int index = 0;

System.out.println("Looking for Events");

java.util.Calendar timel = Java.util.Calendar.getlnstance();
System.out.println(timel.toString());

session.begin();

java.util.HashMap aideMap = super.getAIDESignaturesHashMapO;

Iterator itr = eventCont.scant"Event");

while (itr.hasNext 0){
event = (Event)itr.next();

if(site == null)

{
site = event.getReportingSite() ;

}

if(aideMap.containsValue(event.getAideSignature()))

{
index++;
aideSig = (AIDESignature)event.getAideSignature();
table.put(site.getName(), event);

session.commit();

java.util.Calendar time2 = java.util.Calendar.getlnstanceO
System.out.println(time2.toString());

137

www.manaraa.com

System.out.printin("" + index);

DJ Events of Single IP

D.3.1AIDE

public void readRelDatalPOnly()

{
int index = 0;

Site site = new SiteO;
Event event;
java.util.Hashtable table = new java.util.Hashtable0;

ResultSet results = null;

Statement stmt = null;

java.util.Calendar timel = java.util. Calendar, getlnstance () ,-
System, out .printIn (timel. toString ()) ,-
try

{
stmt = relCon.createStatement();

results =
stmt.executeQuery(

"SELECT S.NAME, S.ACCRYN, S.SITE_IMG, S.STATE, S.CITY,
S.CREATE_DT, S.UPDATE_DT, S.URL, S.LAT, S.LON, S.CERT, "

+ "E.CREATE_DB_DT, E.UPDATE_DT, E.SENSOR_NAME, E.SRCIP,
E.DESTIP, E.DESCRIPTION, E.SRCNAME, E.DESTNAME, E.STAT, E.SIGNATURE, E.SIG_NAME,
E.PRIORITY, E.SITE_LOC, E.PROTOCOL, E.SRCPORT, E.DESTPORT "

+ "FROM EVENT E, SITE S "
+ "WHERE (E.SRCIP = '192.168.0.2') AND "
+ "(E.SITE_NAME = S.ACCRYN)");

}
catch (Exception e)

{
System.out.printIn("readData: " + e);

}

try

{
while (results.next())

{

if (index == 0)

{
site.setName(results.getString(1));
site.setAccronym(results.getString(2));
site.setSitelmage(results.getString(3)) ;
site.setState(results.getString(4));
site.setCity(results.getString(5));
site.setURL (results.getString(8)) ,-
site.setLatitude(results.getString(9));
site.setLongitude(results.getString(10));

138

www.manaraa.com

site.setCert(results.getString(11));

}

event = new Event();
event.setSrcIP(results.getString(15));
event.setDstIP(results.getString(16)) ;
event. setSrcName (results.getString(18)) ,-
event.setDstName(results.getString(19));
event.setStatus(results.getString(20));
event.setPriority(results.getByte(23));
event.setProtocol(results.getString(25));
event.setSrcPort(results.getShort(26)) ;
event.setDstPort(results.getShort(27));

event.setSite(site);

table.put(site.getName(), event);

index++;

}
results.close();

}

catch (Exception e)

{
System.out.printIn("Query exception: " + e) ;
e.printStackTrace();
super.terminate();

}

Java.util.Calendar time2 = Java.util.Calendar.getlnstance0
System.out.printIn(time2.toStringO);

System.out .printlnC" + index);

}

D.3.2 OOAIDE

public void readObjyDatalPOnly() {

Site site = new Sited;
java.util.Hashtable table = new Java.util.Hashtable0;
Event event;
int index = 0;

System.out.println("Looking for Events");

java.util.Calendar timel = java.util.Calendar.getlnstance();
System.out.println(timel.toStringO);

session.begin();

String predicate = new String("srcip_A == 192 AND srcip_B == 168 AND srcip_C
== 0 AND srcip_D == 2");

Iterator itr = eventCont.scan("Event", predicate);

139

www.manaraa.com

while (itr.hasNext()){
event = (Event)itr.next();

if(site == null)

{
site = event.getReportingSite();

}

table.put(site.getName(), event);

index++;

}

session.commit();

Java.util.Calendar time2 = java.util.Calendar.getlnstance();
System.out.printIn(time2.toString());
System.out.println("" + index);

}

D.4 Events of Single IP with Sensor

DA. 1 AIDE

public void readRelDatalPandSensor()

{
int index = 0 ,-

Site site = new SiteO;
Event event;
Sensor sensor = new Sensor (),-

Java.util.Hashtable table = new java.util.Hashtable();

ResultSet results = null;

Statement stmt = null;

Java.util.Calendar timel = java.util .Calendar .getlnstance () ,-
System.out.println(timel.toString());
try

{
stmt = relCon.createStatement();

results =
stmt.executeQuery(

"SELECTS.NAME,S.ACCRYN,S.SITE_IMG,S.STATE,S.CITY,S.CREATE_DT,
S.UPDATE_DT, S.URL, S.LAT, S.LON, S.CERT, "

+
"E.CREATE_DB_DT,E.UPDATE_DT,E.SENSOR_NAME,E.SRCIP,E.DESTIP,E.DESCRIPTION,E.SRCNA
ME,E.DESTNAME,E.STAT,E.SIGNATURE,E.SIG_NAME,E.PRIORITY, E.SITE_LOC, E.PROTOCOL,
E.SRCPORT, E.DESTPORT, "

+ "R.SENSOR_NAME,R.LOCATION,R.IP_ADDR,R.ACCRYN,R.STATUS,
R.PORT,R.CREATE_DT,R.UPDATE_DT "

+ "FROM EVENT E, SITE S, SENSOR R "
+ "WHERE "

140

www.manaraa.com

+ "E.SENSOR_NAME = R.SENSOR_NAME AND
+ "E.SITE_NAME = S.ACCRYN AND "
+ "R.ACCRYN = S.ACCRYN AND "
+ "E.SRCIP = '192.168.0.2'");

catch (Exception e)

{
System.out.println("readData: " + e);

}

try

{
while (results.next())

{

if (index == 0)

{
site.setName(results.getString(1));
site.setAccronym(results.getString(2));
site.setSitelmage(results.getString(3));
site .setState (results .getString (4)) ,-
site.setCity(results.getString(5)) ;
site.setURL(results.getString(8));
site.setLatitude(results.getString(9));
site.setLongitude(results.getString(10));
site.setCert(results.getString(11));

sensor.setName(results.getString(28));
sensor. setgLocation(results.getString(29));
sensor.setIP(results.getString(30));
sensor.setStatus(results.getstring(31).charAt(0);

}

event = new Event();
event.setSrcIP(results.getString(15));
event. setDstIP (results.getString (16)) ,-
event.setSrcName(results.getString(18));
event.setDstName(results.getString(19));
event. setStatus (results .getString (20)) ,-
event.setPriority(results.getByte(23));
event.setProtocol(results.getString(25));
event. setSrcPort (results.getShort (26)) ,-
event.setDstPort(results.getShort(27));

event.setSite (site);
event.setSensorRef(sensor);

table.put(site.getName(), event);

index++;

re suits, close ().;

}

catch (Exception e)

141

www.manaraa.com

System.out.println("Query exception: " + e)
e.printStackTrace();
super.terminate();

java.util.Calendar time2 = java.util.Calendar.getlnstance();
System.out.printIn(time2.toStringO);

}
System, out. printlnC" + index);

D.4.2 OOAIDE

public void readObjyDatalPandSensor() {

Site site = new SiteO;
java.util.Hashtable table = new java.util.Hashtable();

Event event;
Sensor sensor;

int index = 0 ;

System.out.println("Looking for Events");

java.util.Calendar timel = java.util .Calendar .getlnstance 0 ,-
System.out.println(timel.toString());

session.begin();

String predicate = new String("srcip_A == 192 AND srcip_B == 168 AND srcip_C
== 0 AND srcip_D == 2");

Iterator itr = eventCont.scant"Event", predicate);

while (itr.hasNext()){
event = (Event)itr.next();

if (site == null)

{
site = event.getReportingSite();

}

sensor = event.getSensor();

table.put (site.getName () , event) ,-

index++;

}

session.commit();

java.util.Calendar time2 = java.util.Calendar.getlnstance(),•
System.out.println(time2.toString());
System.out .printlnC" + index);

142

www.manaraa.com

Bibliography

AIDE. AIDE User's Manual Version 3.2. Draft ed. AFRL Rome Labs, NY: 2000.

Anonymous. Maximum Linux Security. Indianapolis, IN: SAMS, 2000.

Blaha, Michael, and William Premerlani. Object-Oriented Modeling and Design for
Database Applications. Upper Saddle River, NJ: Prentice Hall, 1998.

Chang, D.T., and V. Srinivasan. "Object Persistence in Object-Oriented Applications."
Systems Journal vol. 36. No. 1 (1997). Online. Internet. 110ct2000. Available:
http ://www.research.ibm.com/journal/sj/3 61 /srinivasan.html.

Davie, Bruce S., and Larry L. Peterson. Computer Networks: A Systems Approach. San
Fransisco, CA: Morgan Kaufmann Publishers, Inc., 1996.

Domajnko, Tomaz, Matjaz B. Juric, Bostjan Brumen and Ivan Rozman. "How to Store
Java Objects." Java Report. April 1999. Available:
http//www.poet.com/news/in_the_press/java_report/041999.html.

Farley, Jim. Java Distributed Computing. 1st ed. Morris Street, Sebastopol, CA: 1998.

Hanushevsky, Andrew. "Mass Storage for BaBar at SLAC." Presentation. Stanford
University, 8 Oct 1999.

—. "Objectivity Open File System." Presentation. Stanford
University, 8 Oct 1999.

Horstmann, Cay S. and Gary Cornell. Core Java: Volume II - Advanced Features.
Upper Saddle River, NJ: Prentice Hall, 2000.

SecureCom. "About SecureCom 6000." Online. Available:
http://www.intrusion.com/Products/sc6000.shtml

JIDS. Computer Software. Defense Informaion Systems Agency, 2001. Online.
Available (DoD Only): https://iase.disa.mil/tools/JIDS.html

Kroenke, David M. Database Processing: Fundamental. Design & Implementation. 7th ed.
Upper Saddle River, NJ: Prentice Hall, 1999.

Larson, James A. Database Directions. Upper Saddle River, NJ: Prentice Hall, 1995.

143

www.manaraa.com

Linhares Lima, Pedro A. "A Methodology for Reengineering Relational Databases to an
Object-Oriented Database." Thesis. Air Force Institute of Technology. 1996.

Loomis, Mary E.S. Object Databases: The Essentials. Reading, Mass.: Addison-Wesley,
1995

Montgomery, Stephen. Building Object-Oriented Software. New York, NY: McGraw-
Hill, 1998.

Meyer, Steven. "Very Large Databases at Stanford Linear Accelerator Center." Technical
Report. Stanford University, 28 May 1997.

Müller, Pierre-Alain. Instant UML. Paris, France: WROX Press, 1997.

NetRadar. Computer Software. Net Squared, Inc., 2001. Online. Available:
http://www.netsq.com/Tools/NetworkRadar/index.php3

NFR. Computer Software. Network Flight Recorder Security, Inc., 2001. Online.
Available: http://www.nfr.com

Nmap. Computer Software. Insecure.org, 2001. Online. Available:
http ://www. insecure. org/nmap

Nessus. Computer Software. 2001. Online. Available: http://www.nessus.org

Objectivity. Objectivity/DB Technical Overview. Objectivity Inc., 1999.
—. Objectivity/C++. Using Objectivity/C-H-: Version 4. Objectivity Inc., 1996.
—.Objectivity/Admin. Objectivity/DB Administration. Objectivity Inc., 1996.
—. Objectivity/FTO-DRO. Obiectivitv/FTO and Obiectivitv/DRO. Objectivity Inc.,

1999.
—. Objectivity/Java. Objectivity for Java Guide Release 6.0. Objectivity Inc., 2000.

Oracle Corporation. Oracle8i Enterprise Edition: Getting Started Release 8.1.5 for
Windows NT. Redwood Shores, CA: Oracle Corporation, 1999.

Ranum, Marcus J. "Intrusion Detection & Network Forensics." Presentation. 12th Annual
FIRST Conference (2000), June 1999.

Raptor. Computer Software. Symantec, Corp., 2001. Online. Available:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=47

RealSecure. Computer Software. Internet Security Systems, Inc., 2001. Online.
Available: http://www.iss.net

Sidewinder. Computer Software. Secure Computing Corporation, 2001. Online.
Available: http://www.securecomputing.com

144

www.manaraa.com

Veridian - Trident Data Systems. CIDDS Installation. Administration and User's Manual
Version 3.1. Draft ed. San Antonio, TX: Veridian, 2000.

Wu, Hsin-feng (Edward). "A Distributed Object-Oriented Database Application Design."
Air Force Institute of Technology. 1993.

145

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYY)
03-07-2001

2. REPORT TYPE
Master's Thesis

3. DATES COVERED (From - To)
Jun 2000-Mar 2001

4. TITLE AND SUBTITLE

USING A DISTRIBUTED OBJECT-ORIENTED DATABASE
MANAGEMENT SYSTEM IN SUPPORT OF A HIGH-SPEED
NETWORK INTRUSION DETECTION SYSTEM
DATA REPOSITORY

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Polk, Phillip W., 2Lt, USAF

5d. PROJECT NUMBER
00-034

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Bldg 640
WPAFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/01M-09

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/IFGB
Atta: Mr. John Feldman
Information Directorate/Defensive Information Warfare Branch
Air Force Research Laboratory
525 Brooks Rd.
Rome, NY 13441-4505 COMM:(315) 330-2664

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Air Force has multiple initiatives to develop data repositories for high-speed network intrusion detection systems (IDS). All of

the developed systems utilize a relational database management system (RDBMS) as the primary data storage mechanism. The
purpose of this thesis is to replace the RDBMS in one such system developed by AFRL, the Automated Intrusion Detection
Environment (AIDE), with a distributed object-oriented database management system (DOODBMS) and observe a number of areas:
its performance against the RDBMS in terms of IDS event insertion and retrieval, the distributed aspects of the new system, and the
resulting object-oriented architecture.

The resulting system, the Object-Oriented Automated Intrusion Detection Environment (OOAIDE), is designed, built, and tested
using the DOODBMS Objectivity/DB. Initial tests indicate that the new system is remarkably faster than the original system in terms
of event insertion. Object retrievals are also faster when more than one association is used in the query. The database is then
replicated and distributed across a simple heterogeneous network with preliminary tests indicating no loss of performance. A
standardized object model is also presented that can accommodate any IDS data repository built around a DOODBMS architecture.
15. SUBJECT TERMS
Intrusion Detection System, Object-Oriented, Databases, Object-Oriented Database, Distributed Database, Distributed
Object-Oriented Database, Data Repository, Object-Oriented Programming

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
a. REPORT b. ABSTRACT c. THIS PAGE OF

PAGES

U u U
uu 160

19a. NAME OF RESPONSIBLE PERSON
Dr. Gregg H. Gunsch, ENG

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

	Using a Distributed Object-Oriented Database Management System in Support of a High-Speed Network Intrusion Detection System Data Repository
	Recommended Citation

	/tardir/tiffs/a391602.tiff

